Fatty acids Composition, Antimicrobial Potential and Cosmeceutical Utilization of Prosopis africana Seed Oil

  • Marili Funmilayo Zubair Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
  • Olubunmi Atolani Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
  • Sulyman Olalekan Ibrahim Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
  • Olubunmi Stephen Oguntoye Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
  • Rukayat Abiodun Oyegoke Department of Biochemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
  • Gabriel Ademola Olatunji Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
Keywords: Antimicrobial, Antiseptic, Medicinal soap, Oleic acid, Prosopis africana

Abstract

Abstract. The physicochemical properties, fatty acids profile, antimicrobial activity and soap potential of the seed oil of Prosopis africana were examined. The prepared natural antiseptic soap was absolutely devoid of all forms of synthetics such as alkaline, antimicrobial agents, preservatives, colourants and fragrances. The seed had an oil yield of 4.98% while the saponification, acid, free fatty-acids and iodine values were found to be 11.60 ± 0.54 mgKOH/g, 16.96 ± 0.57 mgKOH/g, 14.60 ± 0.45% oleic and 145.47 ± 0.66 I2 100 g-1 of the oil respectively. The GC-MS result of the prepared fatty acid methyl ester (FAMEs) indicated the presence of oleic acid (33.67%), a monounsaturated fatty acid as the most prominent fatty acid in the oil, followed linoleic acid (18:2), a polyunsaturated acid making up 31.92% of the oil. Palmitic acid (24.96%) is the most abundant saturated fatty acid while stearic acid and valeric acid makes up (7.3%) and (1.96%) respectively. The antimicrobial activity of the oil tested against ten strains of organisms which include: Streptococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Candida albicans, Penicillium notatum, Rhijoptius stoloniter and Aspergillus niger showed good activity. The Minimum Inhibition Concentration (MIC) values obtained for the oils ranges from 31.25 to 125 mg/mL against all the test organisms and within the range 0.125- 0.5 mg/mL for the prepared soap. The physicochemical analysis of the P. africana soap was comparable to commercial antiseptic soaps. The result indicated that quality renewable natural antiseptic soaps ccould be obtained from P. africana seed oil. The result confirms that soaps made from natural lye (alkaline solution) has the capacity to replace existing commercial antiseptic soaps made of synthetic sodium or potassium hydroxides, antimicrobial agents, artificial preservatives and colourants which partly accounts for environmental pollution, increase in antimicrobial resistance and endocrine disruption. The adoption of this green antiseptic soap synthesis technique utilising underexplored P. africana seed oil can help mitigate the negative environmental impact of non-biodegradable synthetic reagents.

 

Resumen. Se examinaron las propiedades fisicoquímicas, el perfil de ácidos grasos, la actividad antimicrobiana y el potencial de jabón de la semilla de aceite de Prosopis africana. El jabón antiséptico natural preparado carecía absolutamente de todas las formas de sintéticos tales como agentes alcalinos, antimicrobianos, conservantes, colorantes y fragancias. La semilla tuvo un rendimiento de aceite de 4.98%, mientras que los valores de saponificación, ácido, ácidos grasos libres y yodo fueron 11.60 ± 0.54 mgKOH / g, 16.96 ± 0.57 mgKOH / g, 14.60 ± 0.45% oleico y 145.47 ± 0.66 I2 100 g

-1  del aceite respectivamente. El resultado de GC-MS del metil éster de ácido graso preparado (FAME) indicó la presencia de ácido oleico (33,67%), un ácido graso monoinsaturado como el ácido graso más prominente en el aceite, seguido del ácido linoleico (18: 2), Ácido poliinsaturado que constituye el 31,92% del aceite. El ácido palmítico (24,96%) es el ácido graso saturado más abundante, mientras que el ácido esteárico y el ácido valérico constituyen (7,3%) y (1,96%) respectivamente. La actividad antimicrobiana del aceite analizada contra diez cepas de organismos que incluyen: Streptococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Candida albicans, Penicillium notatum, Rhijoptius st. Los valores de Concentración de inhibición mínima (CIM) obtenidos para los aceites varían de 31.25 a 125 mg / ml frente a todos los organismos de prueba y se encuentran dentro del rango de 0,125 a 0,5 mg / ml para el jabón preparado. El análisis fisicoquímico del jabón de P. africana fue comparable al de los jabones antisépticos comerciales. El resultado indicó que se podrían obtener jabones antisépticos naturales renovables de calidad a partir del aceite de semilla de P. africana. El resultado confirma que los jabones hechos de lejía natural (solución alcalina) tienen la capacidad de reemplazar los jabones antisépticos comerciales existentes hechos de hidróxidos de sodio o potasio sintéticos, agentes antimicrobianos, conservantes artificiales y colorantes que en parte representan la contaminación ambiental, el aumento de la resistencia antimicrobiana y la endocrina. ruptura. La adopción de esta técnica de síntesis de jabón antiséptico verde que utiliza aceite de semilla de P. africana poco explorada puede ayudar a mitigar el impacto ambiental negativo de los reactivos sintéticos no biodegradables.

Author Biographies

Marili Funmilayo Zubair, Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
Department of Industrial Chemistry, Senior Lecturer
Olubunmi Atolani, Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
Chemistry/ Senior Lecturer
Sulyman Olalekan Ibrahim, Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
Industrial Chemistry/ Lecturer II
Olubunmi Stephen Oguntoye, Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
Chemistry/ Associate Professor
Rukayat Abiodun Oyegoke, Department of Biochemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
Biochemistry/Senior lecturer
Gabriel Ademola Olatunji, Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
Industrial Chemistry/ Professor

References

Fakhri, N.; Qadir, H. Journal of Environmental Science and Engineering, 2011, 5.

Aremu, M.; Olaofe, O.; Akintayo, E. J. Appl. Sci, 2006, 6, 1900-1903.

Aremu, M.; Ibrahim, H.; Bamidele, T. Chem. Proc. Eng. Res., 2015,7, 36-52.

Tabassum, W.; Kullu, A. R.; Sinha, M. The bioscan, 2013, 8, 665-669.

Rios, J.; Recio, M.; Villar, A. Journal of ethnopharmacology, 1988, 23, 127-149.

Van Hal, S.; Paterson, D. L.; Gosbell, I. B. European journal of clinical microbiology & infectious diseases, 2011, 30, 603-610.

Sass, P.; Berscheid, A.; Jansen, A.; Oedenkoven, M.; Szekat, C.; Strittmatter, A.; Gottschalk, G. Journal of bacteriology, 2012,194, 2107-2108.

Burt, S. International journal of food microbiology, 2004, 94, 223-253.

Abano, E.; Amoah, K. Asian Journal of Agricultural Research, 2011, 5, 56-66.

Arafat, S. M.; Gaafar, A. M.; Basuny, A. M.; Nassef, S. L. World Applied Sciences Journal, 2009, 7, 151-156.

Jarret, R. L.; Wang, M. L.; Levy, I. J. Journal of agricultural and food chemistry, 2011, 59, 4019-4024.

Atolani, O.; Adeniyi, O.; Kayode, O. O.; Adeosun, C. B. Journal of Applied Pharmaceutical Science, 2015, 5, 024-028.

Undiandeye, J. A.; Chior, T. J.; Mohammed, A.; Offurum, J. C. AU Journal of Technology, 2014, 17.

Ogunsuyi, H.; Akinnawo, C. Journal of Applied Sciences and Environmental Management, 2012,16.

Onyegbado, C.; Iyagba, E.; Offor, O. Journal of Applied Sciences and Environmental Management, 2002, 6, 73-77.

Agboola, D. Economic Botany, 2004, 58, S34-S42.

Ajiboye, A. Ph. D. Thesis. Department of Biological Sciences, Federal University of Agriculture, Abeokuta, Nigeria, 2009.

Kwon, K. H.; Im Kim, K.; Jun, W. J.; Shin, D. H.; Cho, H. Y.; Hong, B. S. Biological and Pharmaceutical Bulletin, 2002, 25, 367-371.

Huda, S. N.; Grantham-McGregor, S. M.; Tomkins, A. The Journal of nutrition, 2001,131, 72-77.

Miyazawa, M.; Nishiguchi, T.; Yamafuji, C. Flavour and fragrance journal, 2005, 20, 158-160.

Lazzeri, L.; Errani, M.; Leoni, O.; Venturi, G. Industrial Crops and Products, 2004, 20, 67-73.

Van Gerpen, J. Fuel processing technology, 2005, 86, 1097-1107.

Ibeto, C. N.; Okoye, C. O. B.; Ofoefule, A. U. ISRN Renewable Energy, 2012.

Ratnayake, W. N.; Hansen, S. L.; Kennedy, M. P. Journal of the American oil chemists' society, 2006, 83, 475-488.

Warra, A. African Journal of Pure and Applied Chemistry, 2013, 7, 139-145.

Ameh, A.; Muhammad, J.; Audu, H. African Journal of Biotechnology, 2013, 12.

Atolani, O.; Olabiyi, E. T.; Issa, A. A.; Azeez, H. T.; Onoja, E. G.; Ibrahim, S. O.; Zubair, M. F. Sustainable Chemistry and Pharmacy, 2016, 4, 32-39.

Kolapo, A.; Okunade, M.; Adejumobi, J.; Ogundiya, M. World Journal of Agricultural Sciences, 2009, 5, 90-93.

Vivian, O. P.; Nathan, O.; Osano, A.; Mesopirr, L.; Omwoyo, W. N. Open Journal of Applied Sciences, 2014, 4, 433.

Poole, K. Journal of Applied Microbiology, 2002, 92, 55S-64S.

Chuanchuen, R.; Beinlich, K.; Hoang, T. T.; Becher, A.; Karkhoff-Schweizer, R. R.; Schweizer, H. P. Antimicrobial agents and chemotherapy, 2001, 45, 428-432.

Published
04-22-2019