Towards the Stepwise Assembly of Molecular Borromean Rings. A Donor-Acceptor Ring-in-Ring Complex

Authors

  • Ross S. Forgan Northwestern University
  • Jason M. Spruell Northwestern University
  • John-Carl Olsen Northwestern University
  • Charlotte L. Stern Northwestern University
  • J. Fraser Stoddart Northwestern University

DOI:

https://doi.org/10.29356/jmcs.v53i3.995

Keywords:

Borromean Rings, Ring-in-Ring Complex, DonorAcceptor, Supramolecular Chemistry, Crystal Structure

Abstract

The assembly of molecular Borromean Rings from constitutionally independent rings in a stepwise manner depends on the preparation of robust “ring-in-ring” complexes. The π-electron rich macrocycle bis-1,5-dinaphtho[50]crown-14 (1) is shown to form a donor-acceptor ring-in-ring complex with the π-electron poor cyclophane cyclobis(paraquat-4,4'-biphenylene) (24+) in solution. In the crystal superstructure of [1⊂2]·4PF6, CH···O interactions between the polyether loops of 1 and the bipyridinium units of 24+ could disfavor the threading of dialkylammonium components of a third ring.

 

 

Downloads

Download data is not yet available.

Author Biographies

Ross S. Forgan, Northwestern University

Department of Chemistry

Jason M. Spruell, Northwestern University

Department of Chemistry

John-Carl Olsen, Northwestern University

Department of Chemistry

Charlotte L. Stern , Northwestern University

Department of Chemistry

J. Fraser Stoddart, Northwestern University

Department of Chemistry

References

1. Cromwell, P. R.; Beltrami E.; Rampichini, M. Math. Intelligencer 1998, 20 (1), 53–62.
2. a) Liang, C.; Mislow, K. J. Math. Chem. 1994, 16, 27–35. b) Mislow, K. Top. Stereochem. 1999, 22, 1–82.
3. Mao, C.; Sun, W.; Seeman, N. C. Nature 1997, 386, 137–138.
4. Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308– 1312.
5. For an examination of previously unnoticed BR topologies in framework materials see: a) Carlucci, L.; Ciani, G.; Proserpio, D. M. CrystEngComm 2003, 5, 269–279. For further examples see: b) Dobrzañska, L.; Raubenheimer, H. G; Barbour, L. J. Chem. Commun. 2005, 5050–5052. c) Liantonio, R.; Metrangolo, P.; Meyer, F.; Pilati, T.; Navarrini, W.; Resnati, G. Chem. Commun. 2006, 1819–1821. d) Lü, X.–Q.; Pan, M.; He, J.–R.; Cai Y.–P.; Kang, B.–S.; Su, C.–Y. CrystEngComm 2006, 8, 827–829. e) Li, J.; Song, L.; Du, S. Inorg. Chem. Commun. 2007, 10, 358 –361. f) Zhang, X.–L.; Guo, C –P.; Yang, Q.–Y.; Wang, W.; Liu W.–S.; Kang, B.– S.; Su, C.–Y. Chem. Commun. 2007, 4242–4244. g) Zhang, X.–L.; Guo, C.–P.; Yang, Q.–Y.; Lu, T.–B.; Tong, Y.–X.; Su, C.–Y. Chem. Mater. 2007, 19, 4630–4632. h) Yang, Q.–Y.; Zheng, S.–R.; Yang, R.; Pan, M.; Cao, R.; Su, C.–Y. CrystEngComm, 2008, 11, 680–685. i) Byrne, P.; Lloyd, G. O.; Clarke, N.; Steed, J. W. Angew. Chem., Int. Ed. 2008, 47, 5761– 5764. j) Jang, J.–J.; Li, L.; Yang, T.; Kuang, D.–B.; Wang, W. Su, C.–Y. Chem. Commun. 2009, 2387–2389. k) Men, Y.–B.; Sun, J.; Huang, Z.–T.; Zheng, Q.–Y. Angew. Chem., Int. Ed. 2009, 48, 2873–2876.
6. Cantrill, S. J.; Chichak, K. S.; Peters, A. J.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 1–9.
7. Hubin, T. J.; Kolchinski, A. G.; Vance, A. L.; Busch, D. H. Adv. Supramol. Chem. 1999, 5, 237–357.
8. Asakawa, M.; Ashton, P. R.; Menzer, S.; Raymo, F. M.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 1996, 2, 877– 893.
9. Ashton, P. R.; Campbell, P. J.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Philp, D.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1865– 1869.
10. Chiu, S.–H.; Pease, A. R.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2002, 41, 270–274.
11. a) Schmittel, M.; Ganz, A.; Fenske, D. Org. Lett. 2002, 4, 2289– 2292. b) Loren, J. C.; Yoshizawa, M.; Haldimann, R. F.; Linden, A.; Siegel, J. S. Angew. Chem., Int. Ed. 2003, 42, 5702–5705. c) Liu, Y. Tet. Lett. 2007, 48, 3871–3874.
12. Calculations were carried out using Schrödinger MacroModel v9.6. A structural model of [1⊂2]·4Cl was built based on a related crystal structure of a [5]catenane [13] which has two dioxynaphthalene units encompassed by 24+. A conformational search using OPLS carried out in water showed that the polyether loops were of appropriate size to bind a dialkylammonium cation.
13. Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Boyd, S. E.; Credi, A.; Lee, J. Y.; Menzer, S.; Stoddart, J. F.; Venturi, M.; Williams, D. J. J. Am. Chem. Soc. 1998, 120, 4295–4307.
14. Ghosh, S.; Ramakrishnan, S. Angew. Chem., Int. Ed. 2004, 43, 3264–3268.
15. Ashton, P. R.; Brown, C. L.; Chrystal, E. J. T.; Goodnow, T. T.; Kaifer, A. E.; Parry, K. P.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1991, 30, 1039–1042.
16. CCDC 736589 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www. ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
17. Sheldrick, G. M. SHELXTL Version 6.14. Program for Solution and Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.
18. Van der Sluis, P.; Spek, A. L. BYPASS. An Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. Acta Cryst. A46, 194–201.

Downloads

Published

2019-06-24