On the Heats of Formation of Alkanes

Authors

  • Jenn-Huei Lii University of Georgia
  • Norman L. Allinger University of Georgia

DOI:

https://doi.org/10.29356/jmcs.v53i3.990

Keywords:

MM4, MP4, B3LYP, Dispersion Energy, Heats of Formation

Abstract

A broad diverse test set of alkanes and cycloalkanes previously studied with MM4 calculations has had the heats of formation calculated by several different quantum mechanical methods: HartreeFock, MP2, and MP4, and also by B3LYP and B3LYP + dispersion energy. Overall, three computational methods (MM4, MP4, and B3LYP + dispersion) yield results that are generally of experimental accuracy. These results are analyzed and compared in some detail.

Downloads

Download data is not yet available.

Author Biographies

Jenn-Huei Lii , University of Georgia

Department of Chemistry, Chemistry Annex

Norman L. Allinger, University of Georgia

Department of Chemistry, Chemistry Annex

References

1. Benson, S. W. Thermochemical Kinetics, Wiley, New York, 1976.
2. Burkert, U.; Allinger, N. L. Molecular Mechanics, American Chemical Society, Washington, D.C., 1982.
3. Engler, E. M.; Andose, J. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 8005.
4. Allinger, N. L.; Tribble, M. T.; Miller, M. A.; Wertz, D. H. J. Am. Chem. Soc. 1971, 93, 1637.
5. Allinger, N. L.; Hirsch, J. A.; Miller, M. A.; Tyminski, I. J.; and Van-Catledge, F. A. J. Am. Chem. Soc. 1968, 90, 1199.
6. (a) Cox, J. D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds, Academic Press, London, 1970. (b) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd Edition, Chapman and Hall Ltd, 1986. (c) National Institute of Standards and Technology (NIST), webbook.nist.gov/chemistry. 7. Allinger, N. L.; Chen, K.; Lii, J.-H. J. Comput. Chem. 1996, 17, 642.
8. (a) Chen, K.-H.; Lii, J.-H.; Fan, Y.; Allinger, N. L. J. Comput. Chem. 2007, 28, 2391, and references therein. (b) Lii, J.-H. J. Phys. Chem. 2002, 106, 8667.
9. Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K. J. Phys. Chem. A 2000, 104, 5850, and papers cited therein.
10. (a) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc., New York, 1986. (b) Disch, R. L.; Schulman, J. M. J. Phys. Chem. 1996, 100, 3504. (c) Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547.
11. (a) Wiberg, K. J. Comput. Chem., 5, 197 (1984); Wiberg, K. J. Org. Chem. 1985, 50, 5285. (b) Ibrahim, M. R.; Schleyer, P. v. R. J. Comput. Chem. 1985, 6, 157.
12. Allinger, N. L.; Schmitz, L. R.; Motoc, I.; Bender, C.; Labanowski, J. J. Am. Chem. Soc. 1992, 114, 2880. See especially the Supplementary Material.
13. (a) Allinger, N. L.; Sakakibara, K.; Labanowski, J. J. Phys. Chem. 1995, 99, 9603. (b) Schmitz, L. R.; Chen, K.-H.; Labanowski, J.; Allinger, N. L. J. Phys. Org. Chem. 2001, 14, 90.
14. (a) Aped, P.; Allinger, N. L. J. Am. Chem. Soc. 1992, 114, 1. (b) Chen, K.-H.; Allinger, N. L. J. Mol. Struct. (Theochem), 2002, 581, 215.
15. (a) Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428. (b) Wertz, D. H.; Allinger, N. L. Tetrahedron, 1979, 35, 3.
16. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
17. (a) Labanowski, J.; Schmitz, L. R.; Chen, K.-H.; Allinger, N. L. J. Comput. Chem. 1998, 19, 1421. (b) Schmitz, L. R.; Chen, K.-H.; Labanowski, J.; Allinger, N. L. J. Phys. Org. Chem. 2001, 14, 90. 18. (a) Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175. (b) Grimme, S. J. Chem. Phys., 124, 034108 (2006). (c) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397.
19. Verevkin, S. P.; Nolke, M.; Beckhaus, H.-D.; Ruechardt, C. J. Org. Chem. 1997, 62, 4683.
20. (a) Beckhaus, H.-D.; Ruechardt, C.; Lagerwall, D. R.; Paquette, L. A.; Wahl, F.; Prinzbach, H. J. Am. Chem. Soc. 1995, 117, 8885. (b) Beckhaus, H.-D.; Ruechardt, C.; Lagerwall, D. R.; Paquette, L. A.; Wahl, F. Prinzbach, H. J. Am. Chem. Soc. 1994, 116, 11775.

Downloads

Published

2019-06-24