Studies of Structural, Dielectric and Electrical Characteristics of Complex Perovskite: Pb(Co1/3Mn1/3W1/3)O3

Authors

  • Dr. P. G. R. Achary Siksha 'O' Anusandhan University
  • Deeptimayee Khatua Siksha ‘O’ Anusandhan, Deemed to be University
  • Dr Santosh K Parida Siksha ‘O’ Anusandhan, Deemed to be University
  • Sujit Dehurys Vikram Deb (Autonomous) College, Jeypore
  • Prof.R.N.P.Choudhary Siksha ‘O’ Anusandhan, Deemed to be University

DOI:

https://doi.org/10.29356/jmcs.v64i2.983

Keywords:

Multiferroic material, electrical properties, Nyquist plots, dielectric relaxation

Abstract

A lead-based multiferroic, Pb(Co1/3Mn1/3W1/3)O3, was synthesized by using a high-temperature solid-state reaction technique. Based on X-ray structural analysis, an orthorhombic crystal structure has been suggested for the material. The scanning electron microscopy (SEM) image exhibits a morphology with and uniform grains distribution. A detailed study of variation of dielectric parameters with frequency and temperature exhibits that Pb(Co1/3Mn1/3W1/3)O3 undergoes multiple phase transitions; first transition (Tc1) appeared at 436K (ferroelastic to ferroelectric) whereas second transition ( Tc2) appeared at 504K ( ferroelectric to paraelectric). Since the peaks of dielectric constant are broader and diffused, a diffusivity parameter (γ) has been estimated to the amount of disordering in the material structure.The contribution of grain,grain boundaries and electrode effect in electrical conduction mechanisim can be understood by frequency-temperature dependence of resistive characterestics using CIS spectroscopy (complex impedance spectroscopy). Impedance or Nyquist plots were modeled with an equivalent circuit having capacitance, resistance and related parameters. Studies of transport properties, ac conductivity, electrical modulus and magneto-electric (ME) effect of the materialis reported in this communication.

Downloads

Download data is not yet available.

Author Biographies

Dr. P. G. R. Achary, Siksha 'O' Anusandhan University

Deparment of Chemistry

Deeptimayee Khatua, Siksha ‘O’ Anusandhan, Deemed to be University

PhD. Research Scholar,Department of Chemistry, Siksha ‘O’ Anusandhan, Deemed to be University, Khandagiri Square, Bhubaneswar- 751030 India).

Dr Santosh K Parida, Siksha ‘O’ Anusandhan, Deemed to be University

Department of Physics,Siksha ‘O’ Anusandhan, Deemed to be University, Khandagiri Square, Bhubaneswar- 751030 India).

Sujit Dehurys, Vikram Deb (Autonomous) College, Jeypore

P.G. Department of Chemistry, Vikram Deb (Autonomous) College, Jeypore

Prof.R.N.P.Choudhary, Siksha ‘O’ Anusandhan, Deemed to be University

Department of Physics,Siksha ‘O’ Anusandhan, Deemed to be University, Khandagiri Square, Bhubaneswar- 751030 India).

References

Ascher, E.; Rieder, H.; Schmid, H.; Stössel, H. J. Appl. Phys. 1966, 37, 1404. DOI: https://doi.org/10.1063/1.1708493.

Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M.; Wuttig, M.; Ramesh, R. Science 2003, 299,1719.

DOI: https://doi.org/10.1126/science.1080615.

Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Nature 2003, 426, 55. DOI: https://doi.org/10.1038/nature02018.

Hur, N.; Park, S.; Sharma, P.A.; Ahn, J.S.; Guha, S.; Cheong, S-W Nature 2004, 429, 392. DOI: https://doi.org/10.1038/nature02572.

Yoo, J.; Yoon, K.; Lee, Y.; Suh, S.; Kim, J.; Yoo, C. Jpn. J. Appl. Phys. 2000, 39, 2680. DOI: https://doi.org/10.1143/JJAP.39.2680.

Sasaki, Y.; Yamamoto, M.; Ochi, A.; Inoue, T.; Takahashi, S. Jpn. J. Appl. Phys. 1999, 38, 5598. DOI: https://doi.org/10.1143/JJAP.38.5598.

Masao, K.; Kazuaki, K. J. Am. Ceram. Soc. 2004, 84, 2469–2474.DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01037.x.

Corker, D. L.; Whatmore, R. W.; Ringgaard, E.; Wolny, W. W. J. Eur. Ceram. Soc. 2000, 20, 2039–2045. DOI: https://doi.org/https://doi.org/10.1016/S09552219(00)00089-3.

Hayashi, T.; Hasegawa, T.; Tomizawa, J.; Akiyama, Y. Jpn. J. Appl. Phys. 2003, 42, 6074. DOI: https://doi.org/10.1143/JJAP.42.6074/meta.

Sanchez, D. A.; Ortega, N.; Kumar, A.; Roque-Malherbe, R.; Polanco, R.; Scott, J. F.; Katiyar, R. S. AIP Adv. 2011, 1, 42169. DOI: https://doi.org/10.1063/1.3670361.

Mathe, V. L.; Patankar, K. K.; Lotke, S. D.; Joshi, P. B.; Patil, S. A. Bull. Mater. Sci. 2002, 25, 347–350. DOI: https://doi.org/10.1007/BF02704130.

Quirós, M.; Gražulis, S.; Girdzijauskait.e, S. .; Merkys, A.; Vaitkus, A. J. Cheminform. 2018, 10. DOI: https://doi.org/10.1186/s13321-018-0279-6.

Vasconcelos, D. C. L.; Costa, V. C.; Nunes, E. H. M.; Sabioni, A. C. S.; Gasparon, M.; Vasconcelos, W. L. Mater. Sci. Appl. 2011, 02, 1375–1382. DOI: https://doi.org/10.4236/msa.2011.210186.

Koops, C. G. Phys. Rev. 1951, 83, 121–124. DOI: https://doi.org/10.1103/PhysRev.83.121 .

Pawar, R. P.; Puri, V. Ceram. Int. 2014, 40, 10423–10430. DOI: https://doi.org/http://dx.doi.org/10.1016/j.ceramint.2014.03.013.

Dos santos-García, A. J.; Solana-Madruga, E.; Ritter, C.; Andrada-Chacón, A.; Sánchez-Benítez, J.; Mompean, F. J.; Garcia-Hernandez, M.; Sáez-Puche, R.; Schmidt, R. Angew. Chemie Int. Ed. 2017, 56, 4438–4442. DOI: https://doi.org/10.1002/anie.201609762.

Goodenough, J. B.; Zhou, J. Sci. Technol. Adv. Mater. 2015, 16, 36003. DOI: https://doi.org/10.1088/1468-6996/16/3/036003.

Liang, F.; Hui, Z.; Bolin, W.; Runzhang, Y. Prog. Cryst. Growth Charact. Mater. 2000, 40, 161–165. DOI: https://doi.org/10.1016/S0960-8974(00)00037-1.

Pilgrim, S. M.; Sutherland, A. E.; Winzer, S. R. J. Am. Ceram. Soc. 1990, 73, 3122–3125. DOI: https://doi.org/10.1111/j.1151-2916.1990.tb06733.x.

Kumar, A.; Singh, B. P.; Choudhary, R. N. P.; Thakur, A. K. J. Alloys Compd. 2005, 394, 292–302. DOI: https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2004.11.012.

Ram, M. J. Alloys Compd. 2011, 509, 1744–1748. DOI: https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2010.09.212.

Jonscher, A. K. J. Phys. D. Appl. Phys. 1999, 32, R57. DOI: https://doi.org/10.1088/0022-3727/32/14/201.

Jonscher, A. K. Nature 1977, 267, 673–679. DOI: https://doi.org/10.1038/267673a0.

Ross Macdonald, J. Solid State Ionics 1984, 13, 147–149. DOI: https://doi.org/http://dx.doi.org/10.1016/0167-2738(84)90049-3.}

Ranjan, R.; Kumar, R.; Kumar, N.; Behera, B.; Choudhary, R. N. P. J. Alloys Compd. 2011, 509, 6388–6394. DOI: https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2011.03.003.

Sen, S.; Choudhary, R. N. P.; Pramanik, P. Phys. B Condens. Matter 2007, 387, 56–62. DOI: https://doi.org/http://dx.doi.org/10.1016/j.physb.2006.03.028.

Hirose, N.; West, A. R. J. Am. Ceram. Soc. 1996, 79, 1633–1641. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08775.x.

Gabal, M. A. E.-F.; Al Angari, Y. M.; Obaid, A. Y. Comptes Rendus Chim. 2013, 16, 704–711. DOI:

https://doi.org/http://dx.doi.org/10.1016/j.crci.2013.01.009.

Shi, M.; Zuo, R.; Xu, Y.; Wang, L.; Gu, C.; Su, H.; Zhong, J.; Yu, G. Ceram. Int. 2014, 40 , 9249–9256. DOI: https://doi.org/http://dx.doi.org/10.1016/j.ceramint.2014.01.146.

Additional Files

Published

2020-04-04

Issue

Section

Regular Articles