Removal of Cr(VI) ions using a binary grafting of N-vinylcaprolactam and N,N -dimethylacrylamide onto crosslinked chitosan, synthesized by gamma radiation

Authors

  • Zaira Patiño Universidad Nacional Autónoma de México
  • Alejandra Ortega Universidad Nacional Autónoma de México
  • Guillermina Burillo Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v63i4.980

Keywords:

Chitosan networks, Cr(IV) retention, adsorption isotherms, radiation grafting, N-vinylcaprolactactam

Abstract

Chitosan is characterized by its good affinity of metal ions due to high amount of amino groups. However, crosslinking of chitosan results in a dramatic decrease of retention properties due to reaction of amino groups during process. N,N-dimethylacrylamide (DMAAm) increases the hidrophilicity of the system and improve the apparent mechanic properties; while N-vinylcaprolactam (NVCL), a temperature stimuli sensitive monomer with a LCST of about 32 oC, makes possible for reuse the material. Adsorption of Cr(VI) onto crosslinked chitosan (net-CS) and NVCL/DMAAm binary grafted system onto net-CS, synthesized by gamma radiation of 60Co, has been investigated. The experimental results obtained from equilibrium adsorption studies are fitted in Langmuir and Freundlich isotherms. The Langmuir model agreed better, indicating that adsorption process is carried out homogeneously onto surface. The maximum adsorption capacity was 24.63 and 55.2 mg g-1 for net-CS (1%) and net-CS (3%), respectively. The maximum retention was obtained from the binary grafted system (21%) onto net-CS (3%) with 142.86 mg g-1.

Downloads

Download data is not yet available.

Author Biographies

Zaira Patiño, Universidad Nacional Autónoma de México

Instituto de Ciencias Nucleares

Alejandra Ortega, Universidad Nacional Autónoma de México

Instituto de Ciencias Nucleares

Guillermina Burillo, Universidad Nacional Autónoma de México

Instituto de Ciencias Nucleares

References

Wojcik, G.; Neagu, V.; Bunia I. J. Hazard. Mater. 2011, 190, 544-552.

Bhattachayra, A. K.; Naiya, T. K.; Mandal, S. N.; Das, S. K. Chem. Eng. J. 2008, 137, 529-541.

Singha, B.; Das, S. K. Coll. Surf. B, 2011, 84, 221-232.

Burillo, G.; Serrano-Gomez, J.; Bonifacio-Martinez, J. J. Mex. Chem. Soc. 2013, 57 (2), 80-84.

Kavakh, C.; Barsbay, M.; Tilki, S.; Guven, O.; Kavakli, P. A. Water Air Soil Pollut. 2016, 227, 473.

Wu, F. C.; Tseng, R. L.; Juang, T. S. J. Hazard. Mater. 2001, 81, 167-177.

Drobny, J.G. Ionizing Radiation and Polymers: Principles, Technology, and Applications, 2012, 1– 298.

Tinoco, D.; Ortega, A.; Burillo, G. MR Comm. 2018, 8, 617-623.

Islas, L.; Burillo, G.; Ortega, A. Macromol. Res. 2018, 690-695.

Montes, J. A.; Ortega, A.; Burillo, G. J. Radioanal. Nucl. Chem. 2015, 303, 2143-2150.

Perez-Calixto, M.P.; Ortega, A.; Garcia-Uriostegui, L.; Burillo, G. Radiat. Phys. Chem. 2016, 119, 228-235.

Lim, L. Y.; Khor, E.; Koo, O. J. Biomed. Mater. Res. 1998, 43, 282-290.

Mohan, S.; Karthikeyan, J. Environ. Pollut. 1997, 97, 183-187.

Puttamat, S.; Pavarajarn, V. Int. J. Chem. Eng. Appl. 2016, 7, 239-243.

Venckatesh, R.; Amudha, T.; Sivaraj, R.; Chandramohan, M.; Jambulingam, M. Int. J. Eng. Sci. Technol. 2010, 2, 2040-2050.

Beppu, M. M.; Vieira, R. S.; Aimoli, C. G.; Santana C. C. J. Membr. Sci. 2007, 301, 126-130.

Monier, M. Int. J. Biol. Macromol. 2012, 50, 773-781.

Wan Ngah, W. S.; Teong, L. C.; Hanafiah, M. A. K. M. Carbohydr. Polym. 2011, 83, 1446-1456.

Published

2019-12-09

Issue

Section

Regular Articles

Similar Articles

You may also start an advanced similarity search for this article.