Zinc Electrodeposition from Chloride Solutions onto Glassy Carbon Electrode

Authors

  • Luis Humberto Mendoza-Huízar Universidad Autónoma del Estado de Hidalgo
  • Clara Hilda Rios-Reyes Universidad Autónoma del Estado de Hidalgo
  • María Guadalupe Gómez-Villegas Universidad Autónoma del Estado de Hidalgo

DOI:

https://doi.org/10.29356/jmcs.v53i4.978

Keywords:

Zinc, Quasi-reversible, Charge transfer control, Kinetic study, Nucleation

Abstract

An electrochemical study of zinc deposition was carried out in baths containing 0.5 M ZnCl2 and 0.4 M H3BO3. From the voltammetric study it was found that, in our experimental conditions, zinc electrodeposition is quasi-reversible and occurs under charge transfer control. The average coefficient diffusion calculated was D = 7.14 × 10-6 cm2s-1 while the standard constant at electrode charge was 8.78 × 10-3 cms-1. The nucleation and growth parameters determined from the potentiostatic study showed that, at bigger overpotentials, a vertical growth is favored, suggesting a dendritic growth. The critical cluster´s size calculated was 2, indicating that each active site is formed by two zinc atoms on the glassy carbon electrode (GCE) surface, while the ΔG for the formation of stable nucleus was 1.35 × 10-20 J/nuclei. The Scanning Electron Microscopy images showed thin platelets of hexagonal crystals and dendrites at lower and higher overpotentials applied, respectively.

Downloads

Download data is not yet available.

Author Biographies

Luis Humberto Mendoza-Huízar, Universidad Autónoma del Estado de Hidalgo

Centro de Investigaciones Químicas

Clara Hilda Rios-Reyes, Universidad Autónoma del Estado de Hidalgo

Centro de Investigaciones Químicas

María Guadalupe Gómez-Villegas, Universidad Autónoma del Estado de Hidalgo

Centro de Investigaciones Químicas

References

1. Barcelo, G.; Sarret, M.; Muller, C.; Pregonas, J. Electrochim. Acta 1988, 43, 13-20.
2. Rajendran, S.; Bharanti, S.; Krishna, C. Plat. Surf. Finish. 1997, 84, 53-57.
3. Hosny, A. Y.; El-Rofei, M. E.; Ramadan, T. A.; El-Gafari, B. A. Met. Finish. 1995, 93, 55-59.
4. Bozzini, B.; Accardi, V. ; Cavalloti, P. L. ; Pavan, F. Met. Finish. 1999, 97, 33-33.
5. Trejo, G.; Ortega-Borges, R.; Meãs, Y. V.; Chainet, E.; Nguyen, B.; Ozil, P. J. Electrochem. Soc. 1998, 145, 4090-4097.
6. Singh, D. D. N.; Dey, M.; Singh, V. Corrosion 2002, 58, 971-980.
7. Sanchez-Cruz, M.; Alonso, F.; Palácios, J. M. J. Appl. Electrochem. 1993, 23, 364-370.
8. Yu, J.; Yang, H.; Ai, X., Chen, Y. Russ. J. Electrochem. 2002, 38, 321-325.
9. Baik, D. S.; Fray, D. J. J. Appl. Electrochem. 2001, 31, 1141-1147.
10. Deblauw, K.; Deboeck, A.; Bollen, J.; Timmermans, W. Proc. ICOTOM 12 Montreal, Quebec, Canada 1999, p. 1293-1295.
11. Ye, X.; Celis, J. P.; De Bonte, M.; Roos, J. R. J. Electrochem. Soc. 1994, 141, 2698-2708.
12. Park, H.; Szpunar, J. A. Proc. ICOTOM 12, Montreal, Quebec, Canada 1999, p. 1421-1424.
13. Tomov, I.; Cvetkova, C. H. R.; Velinov V. J. Appl. Electrochem. 1989, 19, 377-382.
14. Raeissi, K.; Saatchi, A.; Golozar, M. A. J. Appl. Electrochem. 2003, 33, 635-642.
15. Alvarez, A. E.; Salinas, D. R. J. Electroanal. Chem. 2004, 566, 393-400.
16. Torrent-Burgués, J.; Guaus, E. J. Appl. Electrochem. 2007, 37, 643-651.
17. Gomes, A.; Viana, A. S.; Da Silva Pereira, M. I. J. Electrochem. Soc. 2007, 154, D452-D461.
18. Vasilakopoulos, D.; Bouroushian, M.; Spyrellis, N. Electrochim. Acta 2009, 54, 2509-2514.
19. Sillen, L. G.; Stability Constants of Metal-Ion Complexes. Sect. 1: Inorganic Ligands, London: Metcalfe Copper Ltd, 1964.
20. Elpelboin, I.; Ksouri, M.; Wiart, R. J. Electrochem Soc. 1975, 112, 1206-1214
21. Elpelboin, I.; Ksouri, M.; Wiart, R. Faraday Disc. Chem Soc. 1978, 12, 115-120.
22. Taguchi, A. S.; Bento, F. R.; Mascaro, L. H. J. Braz. Chem. Soc. 2008, 19, 727-733.
23. Ibrahim, M. A. M. J. Chem. Technol. Biotechnol. 2000, 75, 745-755
24. Aleksandar, R.; Despic, P. M. G. Electrochim. Acta 1982, 27, 1539-1549.
25. Greef, R.; Peat, R.; Peter, L. M.; Pletcher, D.; Robinson, J. Instrumental Methods in Electrochemistry, Ellis Horwood, Chichester, 1985, Ch. 9.
26. Berzins, T.; Delahay, P. J. Am. Chem. Soc. 1953, 75, 555-559.
27. Delahay, P. New Instrumental Methods in Electrochemistry, Interscience, New York, 1954, p. 122-125.
28. Bard, A. J.; Faulkner, L. R., Electrochemical Methods, Fundamentals and Applications, John Wiley &Sons, Inc., 2000.
29. Matsuda, H.; Ayabe, Y. Z. Elektrochem. 1955, 59, 494-503
30. Aoki, K.; Osteryoung, J. J. Electroanal. Chem. 1980, 110, 19-35.
31. Abyaneh, M. A.; Fleischmann, M. J. Electroanal. Chem. 1981, 119, 187-208.
32. Milchev, A.; Electrocrystallization: Fundamentals of nucleation and growth, Kluwer Academic Publishers, 2002, Chapter. 2.2.3.

Downloads

Published

2019-06-19

Issue

Section

Regular Articles