Synthesis of the Mg2Ni Alloy Prepared by Mechanical Alloying Using a High Energy Ball Mill

Authors

  • José Luis Iturbe-García Instituto Nacional de Investigaciones Nucleares
  • Manolo Rodrigo García-Núñez Universidad Nacional Autónoma de México
  • Beatriz Eugenia López-Muñoz Instituto Nacional de Investigaciones Nucleares

DOI:

https://doi.org/10.29356/jmcs.v54i1.964

Keywords:

Mechanical Alloying, Mg2Ni alloy, Hydrogen Storage, X Ray Diffraction, Scanning Electron Microscopy

Abstract

Mg2Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlledconditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a TGA system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition.

 

 

 

 

Downloads

Download data is not yet available.

Author Biographies

José Luis Iturbe-García, Instituto Nacional de Investigaciones Nucleares

Departamento de Química

Manolo Rodrigo García-Núñez, Universidad Nacional Autónoma de México

Facultad de Estudios Superiores Zaragoza

Beatriz Eugenia López-Muñoz, Instituto Nacional de Investigaciones Nucleares

Departamento de Química

References

1. Chapelle, D. ; Perreux D. Int. J. Hydrogen Energy 2006, 31, 627 – 638.
2. David, E. J. Mater. Process. Tech. 2005, 162-163, 169-177.
3. Fecht, H. J.; Hellstern, E.; Fu, Z.; Johnson, W. L. Metall. Trans. A. 1990, 21, 23-33.
4. Noreus, D.; Jansson, K. Phys. Chem. Bd., 1985, 146-191.
5. Selvam, P.; Viswanathan, B.; Swamy, C. S.; Srinivasan, V. Int. J. Hydrogen Energy 1988, 13, 87-94.
6. Orimo, S.; Fujii, H. Materia Japan JIM, 1997, 36, 13-16.
7. Liu, F. J.; Suda, S. J. Alloys Comp. 1995, 231, 392.
8. Gross, K. J.; Chartouni, D.; Leroy, E.; Zuttel, A.; Schlapbach, L. J. Alloys Comp. 1998, 269, 259.
9. Hong, T. W.; Kim, S. K.; Park, G. S.; Kim, Y. J. Mater. Trans., JIM 2000, 41, 393.
10. Zaluski L., Zaluska A., Tessier P., Strom-Olsen J.O., Schulz R., J. Alloys Comp. 1995, 217, 295-300.
11. Palma Sampayo, A.; Iturbe-García, J. L.; López-Muñoz, B. E.; Sandoval Jiménez, A. Int J. Hydrogen Energy 2009, in press.
12. Imamura, H.; Sakasai, N.; Kajii, Y. J. Alloys Comp. 1996, 232, 218-223.
13. Aymard, L.; Ichtsubo, M.; Uchida, K.; Sekreta, E.; Ikazaki, F., J. Alloys Comp. 1997, 259, L5-L8.
14. Iturbe-García, J. L.; López Muñoz, B. E.; Basurto Sánchez, R.; Millan Salgado, S. Rev. Mex. Fís. 2006, 52, 365-367.
15. Huajun, Y.; Yue, A.; Guohua, X.; Changping, Ch. Mater. Chem. Phys. 2004, 3, 340-344.

Downloads

Published

2019-06-17