Uptake of CrO42- Ions by Fe-Treated Tri-Calcium Phosphate

Authors

  • Juan Serrano-Gómez Instituto Nacional de Investigaciones Nucleares
  • Jorge Luis Ramírez-Sandoval Instituto Nacional de Investigaciones Nucleares
  • Juan Bonifacio- Martínez Instituto Nacional de Investigaciones Nucleares
  • Francisco Granados-Correa Instituto Nacional de Investigaciones Nucleares
  • Verónica Elizabeth Badillo-Almaraz Instituto Nacional de Investigaciones Nucleares

DOI:

https://doi.org/10.29356/jmcs.v54i1.962

Keywords:

Fe-treated tri-calcium phosphate, chromate ions, adsorption, isotherm, thermodynamics parameters

Abstract

CrO42- ion adsorption on Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at pH 5.5 and 1.0x10-4 M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO42- ions was 7.10x10-3 mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters ∆H0, ∆G0 and ∆S0 were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous.

 

 

Downloads

Download data is not yet available.

References

1. Selvi, K.; Pattabhi, S.; Kadirvelu, K. Bioresource Technol. 2001, 80, 87-89.
2. Aggarwal, D.; Goyal, M.; Bansal, R. C. Carbon 1999, 37, 19891997.
3. Lalvani, S. B.; Wiltowski, T.; Hubner, A.; Weston, A.; Mandich, N. Carbon 1998, 36, 1219-1226.
4. Lazaridis, N. K.; Charalambous, Ch. Water Res. 2005, 39, 43854396.
5. Pandey, A.; K.; Pandey, S. D.; Misra, V.; Srimal, A. K. Chemosphere 2003, 51, 329-333.
6. Chun, L.; Hongzhang, C.; Zuohu, L. Process Biochem. 2004, 39, 541-545.
7. Verma, A.; Chakraborty, S.; Basu, J. K. Sep. Purif. Technol. 2006, 50, 336-341.
8. Nakajima, A.; Baba, Y. Water Res. 2004, 38, 2859-2864.
9. Granados-Correa, F.; Serrano-Gómez, J. Sep. Sci. Technol. 2009, 44, 924- 936.
10. Granados-Correa, F.; Bonifacio-Martínez, J.; Serrano-Gómez, J. J. Chil. Chem. Soc. 2009, 54, 252-255.
11. Martínez-Gallegos, S.; Bulbulian, S. Clays Clay Miner. 2004, 52, 650-656.
12. Nakamoto, K. Infrared Spectra of inorganic and coordination compounds. John Wiley & Sons Inc., New York, 1963, 103 and 107.
13. Granados-Correa, F.; Jiménez-Becerril, J. J. Hazard. Mater. 2009, 162, 1178-1184.
14. Puigdomenech, I.: Program MEDUSA (make equilibrium diagrams using sophisticated algorithms), http://www.inorg.Kth. se/Reserach/Ignasi;/index.html.
15. Bitton, G. Formula Handbook for Environmental Engineers and Scientists. John Wiley and Sons, Inc., New York, 1998.
16. Benes, P.; Majer, V. Trace Chemistry of Aqueous Solution. Elsevier. Amsterdam, 1980.
17. Serrano, G. J.; García, D. O. C. J. Radioanal. Nucl. Chem. 1988, 230, 33-37.
18. Kilislioglu, A., Bilgin, B. Radiochim. Acta 2002, 90, 155-160.
19. Gode F., Pehlivan E. J. Hazard. Mater. 2005, 119, 175-182.

Downloads

Published

2019-06-17

Similar Articles

You may also start an advanced similarity search for this article.