Conductivity and Activation Energy in Polymers Synthesized by Plasmas of Thiophene

Authors

  • Ma. Guadalupe Olayo Instituto Nacional de Investigaciones Nucleares
  • Guillermo J. Cruz Instituto Nacional de Investigaciones Nucleares
  • Salvador López Instituto Nacional de Investigaciones Nucleares
  • Juan Morales Universidad Autónoma Metropolitana Iztapalapa
  • Roberto Olayo Universidad Autónoma Metropolitana Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v54i1.960

Keywords:

Plasma, Polymerization, Polythiophene, Conductivity, Activation Energy

Abstract

The electric conductivity, activation energy and morphology of polythiophene synthesized by radiofrequency resistive plasmas are studied in this work. The continuous collisions of particles in the plasma induce the polymerization of thiophene but also break some of the monomer molecules producing complex polymers with thiophene rings and aliphatic hydrocarbon segments. These multidirectional chemical reactions are more marked at longer reaction times in which the morphology of the polymers evolved from smooth surfaces, at low exposure time, to spherical particles with diameter in the 300-1000 nm interval. Between both morphologies, some bubbles are formed on the surface. The intrinsic conductivity of plasma polymers of thiophene synthesized in this way varied in the range of 10-10 to 10-8 S/m; however, the conductivity resulted very sensitive to the water content in the polymers, which produced variations of up to 5 magnitude orders. The activation energy of the intrinsic conductivity was between 0.56 and 1.41 eV, increasing with the reaction time.

 

Plasma, Polymerization, Polythiophene, Conductivity, Activation Energy

Downloads

Download data is not yet available.

Author Biographies

Ma. Guadalupe Olayo, Instituto Nacional de Investigaciones Nucleares

Departamento de Física

Guillermo J. Cruz, Instituto Nacional de Investigaciones Nucleares

Departamento de Física

Salvador López, Instituto Nacional de Investigaciones Nucleares

Departamento de Física

Juan Morales, Universidad Autónoma Metropolitana Iztapalapa

Departamento de Física

Roberto Olayo, Universidad Autónoma Metropolitana Iztapalapa

Departamento de Física

References

1. Subramanian, H.; Lagowski, J. B. Int. J. Quant. Chem. 1998, 66, 229-240.
2. Granström, M. Polym. Adv. Technol. 1979, 8, 424-430.
3. Schon, J. H.; Dodabalapur, A.; Bao, Z.; Kloc, C.; Schenker, O.; Batlogg, B. Nature 2001, 410, 189-192.
4. Bhat, N. V.; Wavhal, D. S. J. Appl. Polym. Sci. 1998, 70, 203– 209.
5. Ryan, M. E.; Hynes, A. M.; Wheale, S. H.; Badyal, J. P. S. Chem. Mater. 1996, 8, 916-921.
6. Silverstein, M. S.; Visoly, F. I. Polymer 2002, 43, 11-20.
7. Yu, Y. J.; Kim, J. G.; Boo, J. H. J. Mater. Sci. Lett. 2002, 21, 951953.
8. Groenewoud, L. M. H.; Weinbeck, A. E.; Engbers, G. H. M.; Feijen, J. Synth. Met. 2002, 126, 143-149.
9. Groenewoud, L. M. H.; Engbers, G. H. M.; Feijen, J. Langmuir 2003, 19, 1368-1374.
10. Groenewoud, L. M. H.; Engbers, G. H. M.; Terlingen, J. G. A.; Wormeester, H.; Feijen, J. Langmuir 2000, 16, 6278-6286.
11. Cruz, G. J.; Morales, J.; Castillo-Ortega, M.; Olayo, R. Synth. Met. 1997, 88, 213-218.
12. Cruz, G.J.; Morales, J., Olayo, R. Thin Solid Films 1999, 342, 119-126.
13. Morales, J.; Olayo, M. G.; Cruz G. J.; Castillo-Ortega, M. M.; Olayo, R. J. Polym. Sci., Polym. Phys. 2000, 38, 3247-3255.

Downloads

Published

2019-06-17