Znx-1CuxMn2O4 Spinels; Synthesis, Structural Characterization and Electrical Evaluation

Authors

  • Francisco Méndez-Martínez Universidad Nacional Autónoma de México
  • Federico González Universidad Autónoma Metropolitana
  • Enrique Lima Universidad Nacional Autónoma de México
  • Pedro Bosch Universidad Nacional Autónoma de México
  • Heriberto Pfeiffer Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v54i1.958

Keywords:

Ceramic, Impedance Spectrosocpy, spinel, Varistor, XRD

Abstract

This work presents the structural characterization and electrical evaluation of Znx-1CuxMn2O4 spinels, which are materials presented as secondary phases into the varistor ceramic systems. Samples were analyzed by X-ray diffraction, solid-state nuclear magnetic resonance, infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. Although, the addition of copper to the ZnMn2O4 spinel did not produce morphological changes, the structure and electrical behaviors changed considerably. Structurally, copper addition induced the formation of partial inverse spinels, and its addition increases significantly the electrical conductivity. Therefore, the formation of Znx-1CuxMn2O4 spinels, as secondary phases into the varistor materials, may compromise significantly the varistor efficiency.

 

Ceramic, Impedance Spectroscopy, spinel, Varistor, XRD.

Downloads

Download data is not yet available.

Author Biographies

Francisco Méndez-Martínez, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

Enrique Lima, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

Pedro Bosch, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

Heriberto Pfeiffer, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

References

1. Clarke, D. R. J. Am. Ceram. Soc. 1999, 82, 485–502.
2. Kuo, C. T.; Chen, C. S.; Lin, I. N. J. Am. Ceram. Soc. 1998, 81, 2942–2948.
3. Kuo, C. T.; Chen, C. S.; Lin, I. N. J. Am. Ceram. Soc. 1998, 81, 2949–2956.
4. Han, J.; Mantas, P. Q.; Senos, A. M. R. J. Eur. Ceram. Soc. 2002, 22, 49–59.
5. Pfeiffer, H.; Knowles, K. M. J. Eur. Ceram. Soc. 2004, 24, 1199– 1203.
6. Méndez-Martínez, F.; Venegas, M. J.; Pfeiffer, H. Int. J. Appl. Ceram. Technol. 2007, 4, 564–570.
7. Hng, H. H.; Knowles, K. M. J. Am. Ceram. Soc. 2000, 83, 2455– 2462.
8. Hng, H. H.; Chan, P. L., Mater. Chem. Phys. 2002, 75, 61–66.
9. Brown, J. J.; Hummel, F. A. Trans. Br. Ceram. Soc. 1965, 64, 419–437.
10. Gopal, R.; Calvo, C. Can. J. Chem. 197, 51, 1004–1009.
11. West, A. R. Solid State Chemistry and its Application, J. Wiley & Sons, New York, 1990.
12. Magri, R.; Zunger, A. Phys. Rev. B, 2001, 64, 1–5. 13 Shannon, R.D. Acta Cryst. A 1976, 32, 751–767. 14 Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part I: Theory and Applications in Inorganic Chemistry, J. Wiley & Sons, New York, 1997.

Downloads

Published

2019-06-17

Similar Articles

You may also start an advanced similarity search for this article.