Isosteric Heats of Adsorption of N2O and NO on Natural Zeolites

Authors

  • Gerardo Domínguez Benemérita Universidad Autónoma de Puebla
  • Rosario Hernández-Huesca Benemérita Universidad Autónoma de Puebla
  • Gelacio Aguilar-Armenta Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.29356/jmcs.v54i2.954

Keywords:

Adsorption, NOx, isosteric heats, natural zeolites

Abstract

We studied the capacities of three natural zeolites to adsorb N2O or NO using a glass high-vacuum volumetric system that permitted characterization of the energetics of the adsorption process. Adsorption equilibrium data were analyzed using the classical Freundlich equation and the Dual–Langmuir model. We employed the Clausius–Clapeyron relationship to calculate the isosteric heats of adsorption using the equilibrium data of the isotherms measured at 273.15 K and 293.15 K. The isosteric heats of reversible adsorption of both gases were smaller than the heats of total adsorption. The interaction energy of N2O with mordenite was larger than the interaction energies of N2O with either erionite or clinoptilolite. The interaction energy of NO was found to be largest with erionite.

 

Downloads

Download data is not yet available.

Author Biographies

Gerardo Domínguez, Benemérita Universidad Autónoma de Puebla

Centro de Investigación de la Facultad de Ciencias Químicas

Rosario Hernández-Huesca, Benemérita Universidad Autónoma de Puebla

Centro de Investigación de la Facultad de Ciencias Químicas

Gelacio Aguilar-Armenta, Benemérita Universidad Autónoma de Puebla

Centro de Investigación de la Facultad de Ciencias Químicas

References

1. Fritz, A.; Pitchon, V. Appl. Catal., B 1997, 13, 1-25.
2. Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. Chem. Mater. 2000, 12, 3158-3164.
3. Centi, G.; Generali, P.; dall’ Olio, L.; Perathorner, S. Ind. Eng. Chem. Res. 2000, 39, 131-137.
4. Hartzog, D. G.; Sircar, S. Adsorption 1995, 1, 133-151.
5. Sircar, S., in: “Fundamentals of Adsorption, Proceedings of Engineering Foundation Conference held at Sonthofen”, Germany, Mersmann, A. B., et. al., Ed., Engineering Foundation, New York, 1991, 815.
6. Siperstein, F.; Gorte, R. J.; Myers, A. L. Langmuir 1999, 15, 1570-1576.
7. Sircar, S.; Rao, M. B., in: Surfaces of Nanoparticles in Porous Materials, Schwarz, J.A., Contescu, C., Ed., Marcel and Dekker, New York, 1999, 501-518.
8. Marchon, B.; Carrazza, J.; Heinemann, H.; Somorjai, G. A. Carbon 1998, 26, 507-514.
9. Do, D. D. Adsorption Analysis: Equilibria and Kinetics, Ed. Imperial College Press, Singapore, 1998.
10. Breck, D.W. Zeolite Molecular Sieves, Ed. J. Wiley & Sons, Inc., New York, 1974.
11. Hernández-Huesca, R.; Díaz, L.; Aguilar-Armenta, G. Sep. Purif. Technol. 1999, 15, 163-173.
12. Hernández-Huesca, R.; Aguilar-Armenta, G. Rev. Soc. Quím. Méx. 2002, 46, 109-114.
13. Hernández-Huesca, R.; Aguilar-Armenta, G.; Domínguez, G. Sep. Sci. Technol. 2009, 44, 63-74.
14. Sears, W. M. Langmuir 2001, 17, 5237-5244
15. Rakic, V., Dondur, V., Gajinov, S., Auroux, A. Thermochim. Acta 2004, 420, 51-57.
16. Patiño-Iglesias, M. E.; Aguilar-Armenta G.; Jiménez-Lopez, A.; Rodríguez-Castellon, E. Colloids Surf. A 2004, 237, 73-77.
17. Aguilar-Armenta, G.; Patiño-Iglesias, M. E.; Jiménez-Jiménez, J.; Rodríguez-Castellon, E.; Jiménez-Lopez, A. Langmuir 2006, 22, 1260-1267.
18. Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids, Ed. Academic Press, London, 1999.
19. Lunell, S.; Persson, P.; Lund, A.; Liu, Y.-J. J. Phys. Chem. B 2005, 109, 7948-7951.
20. Biglino, D.; Bonora, M.; Volodin, A.; Lund, A. Chem. Phys. Lett. 2001, 349, 511-516.
21. Freündlich, H. Colloid and Capillary Chemistry, Ed. Methuen, London, 1926.
22. Guerasimov, Y.; Dreving, V. Curso de Química Física, Ed. MIR, Moscú, 1971.
23. Aguilar-Armenta, G.; Patiño-Iglesias, M.E.; Leyva-Ramos, R. Adsorpt. Sci. Technol. 2003, 21, 81-91.

Downloads

Published

2019-06-17

Issue

Section

Regular Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.