Electrochemical Behavior of Ni-Mo Electrocatalyst for Water Electrolysis

Authors

  • Suilma Marisela Fernández-Valverde Instituto Nacional de Investigaciones Nucleares
  • Eduardo Ordoñez-Regil Instituto Nacional de Investigaciones Nucleares
  • Gerardo Cabañas-Moreno Instituto Politécnico Nacional
  • Omar Solorza-Feria Instituto Politécnico Nacional

DOI:

https://doi.org/10.29356/jmcs.v54i3.931

Keywords:

NiMo materials, organic chemical synthesis, electrochemical properties, hydrogen evolution reaction, oxygen evolution reaction.

Abstract

Nickel-molybdenum based electrolcatalysts were synthesized in organic media for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. The structure, morphology, and chemical composition of the catalysts were evaluated by XRD, SEM and AAS. Results revealed nanocristalline powder materials with Ni0.006Mo, Ni0.1Mo, and NiMo compositions. The best performance for HER, was obtained on Ni0.1Mo electrode, whereas NiMo was for the OER. Results suggest that the material with 1:1 stoichiometric ratio could be considered as a promising electrocatalyst for OER. This nanocrystalline powder is formed by Ni2Mo3O8 and a crystalline structure attributed to the possible formation of a NiMo cluster, becomes NiMoO4 .after thermal treatment at 1073K in air. The NiMo 1:1 cluster catalyst presented electrochemical stability during the OER.

Downloads

Download data is not yet available.

Author Biographies

Suilma Marisela Fernández-Valverde, Instituto Nacional de Investigaciones Nucleares

Gerencia de Ciencias Básicas, Departamento Qu

Eduardo Ordoñez-Regil, Instituto Nacional de Investigaciones Nucleares

Gerencia de Ciencias Básicas, Departamento Química

Gerardo Cabañas-Moreno, Instituto Politécnico Nacional

Centro de Nanociencias y Micro y Nanotecnologías

Omar Solorza-Feria, Instituto Politécnico Nacional

Departamento Química, Centro de Investigación y de Estudios Avanzados

References

1. Sumbogo Murti, Sri D.; Choi, Ki-H.; Korai, Y.; Mochida, I. Appl. Cat. A 2005, 280, 133-139.
2. Lewandowsky, M.; Sarbak Z. Appl. Cat. A. General 1997, 156, 181-192
3. Grzeskowiak, J.R.; Mrozińska, K.; Masalska, A.; Góralski, J.; Rynkowski, J.; Tylus, W. Catal. Today 2006, 114, 272-280.
4. Gómez, E.; Pellicer, E.; Vallés, E. Electrochem. Commun. 2005, 7, 275-281.
5. F. de Souza, R.; Loget, G.; Padilha, J.C.; Matini, E.M.A.; de Souza, M.O. Electrochem. Comm. 2008, 10, 1673-1675
6. Kubisztal, J.; Budniok, A. Int. J. Hydrogen Energy 2008, 33, 4488-4494
7. Marshall, A.T.; Sunde, S.; Tsypkin, M.; Tunold, R. Int. J. Hydrogen Energy 2007, 32, 2320-2324
8. Rossmeisl, J.; Qu, Z-W.; Zhu, H. ; Kroes, G-J. ; Norskov, J. K. J. Electroanal. Chem. 2007, 607, 83-89.
9. Navarro-Flores, E.; Chong, Z.; Omanovic, S. J. Mol. Cat. A: Chem. 2005, 226, 179-197
10. Rasten, E.; Hagen, G.; Tunold, R. Electrochim. Acta 2003, 48, 3945-3952.
11. Marshall, A.; Borreden, B.; Hagen, G.; Sunde, S.; Tsypkin, M.;
Tunold, R. Russ. J. Electrochem., 2006, 42, 1134-1140.
12. Tiwari, S.K.; Samuel, S.; Singh, R.N.; Poillerat, G.; Koenig JF.;Chartier P. Int. J. Hydrogen Energy 1995, 20, 9-15
13. De Gis, M.J.; Tremiliosi-Filho, G.; Gonzalez E.R.; Srinivasan S.; Appleby A. J. Int. J. Hydrogen Energy 1995, 20, 423-427
14. Sanches, L.S.; Domingues, S.H.; Marino, C.E.B.; Mascaro, L.H. Electrochem. Comm. 2004, 6, 543 548.
15. Krolikowski, A.; Wiecko, A. Electrochim. Acta 2002, 47 ,2065-2069
16. Lo, YL.; Chou, S C.; Hwang, B.J. J. Appl. Electrochem. 1996, 26, 733-740
17. Trasatti, S. 1994 in: Lipkowsky, J,; Ross, P.N, editors. Electrochemistry of Novel Materials. VCH. Chapter 5New York.
18. Singh, R.N.; Mishra, D.; Anindita, Shinha, A:S:K; Singh, A. Electrochem. Comm. 2007, 9, 1369-1373.
19. Solorza-Feria, O.; Ellmer, K.; Giersig, M.; Alonso-Vante, N. Electrochem. Acta 1994, 39, 1647-1653
20. Ramírez-Raya, S.D.; Solorza-Feria, O.; Ordoñez-Regil, E.; Benaissa, M.; Fernández-Valverde, S.M. Nanostruct. Mater. 1998, 8, 1337-1346.
21. Vogel, W.; Alonso-Vante, N. J. Catal. 2005, 232, 395-401
22. Jones, T.E.; Noakes, T.C.Q.; Bailey, P.; Baddeley, C. J. Surf. Sci. 2003, 523, 12-20.
23. Natl.Bur. Stand. (U.S.) Monography 1982, 25, 1962.
24. Prabaharan, S.R.S,; Michael, M.S.; Ramesh, S.; Begam, K.M. J. of Electroanal. Chem. 2004, 570, 107-112.
25. Levine, S.; Smith, A.L. Discuss. Faraday Society. 1971, 52, 290-301.
26. Divisek, J.; Schmitz, H.; Balej, J. J. Appl. Electrochem. 1989, 19, 519-530.
27. Schiller, G.; Borck, V.; Henne, R.; Hug, W. Proceedings of the 10th World Hydrogen Energy Conference, Cocoa Beach, Florida Vol (1) 1994, 631-639
28. El´Bayadi, M.; Poillerat, G.; Rehspringer, J.L.; Gautier, J.L.; Koening, J.F.; Chartier, P. J. Sol. St. Chem. 1994, 109, 281-288
29. Suffredini, H.B.; Cerne, J.L.; Crnkovic, F.C.; Machado, S.A.S.; Avaca, L.A. Int. J. Hydrogen Energy. 2000, 25, 415-423.
30. Solorza-Feria, O.; Citalán-Cigarroa, S.; Rivera-Noriega, R.; Fernández-Valverde S.M. Electrochem. Comm. 1999, 1, 585-589.
31. Suárez-Alcantara, K.; Rodríguez-Castellanos, A.; Durón-Torres, S.; Solorza-Feria, O. J. Power Sources 2007, 171, 381-387.

Published

2019-06-05

Issue

Section

Regular Articles