Titanium Oxide Modification With Oxides of Mixed Cobalt Valence for Photocatalysis

Authors

  • Roberto Alanís-Oaxaca Instituto Nacional de Investigaciones Nucleares
  • Jaime Jiménez-Becerril Instituto Nacional de Investigaciones Nucleares

DOI:

https://doi.org/10.29356/jmcs.v54i3.930

Keywords:

Photocatalysis, Methylene Blue.

Abstract

In the present work, heterogenous photocatalysis, a technique often used for organic compound degradation toxic in water, was used. The photocatalyst most often used in this technique is TiO2, which, due to its physical and chemical properties, can degrade a great number of organic compounds. In addition, in recent years it has been verified that the doping of semiconductors with metals or metallic oxides increases the photocatalytic activity of these semiconductors, which is why it was proposed for doping by the impregnating method using commercial TiO2 synthesized by the Degussa company (TiO2 Degussa P25) with an oxide of mixed cobalt valence (Co3O4) synthesized using the sol-gel method. The synthesized photocatalyst TiO2/Co3O4 was characterized by the techniques of X-ray diffraction (RXD), scanning electronic microscopy (SEM), Raman spectroscopy (RS), and, finally, photocatalytic tests by means of the degradation of methylene blue.

 

Downloads

Download data is not yet available.

Author Biographies

Roberto Alanís-Oaxaca, Instituto Nacional de Investigaciones Nucleares

Departamento de Química

Jaime Jiménez-Becerril, Instituto Nacional de Investigaciones Nucleares

Departamento de Química

References

1. Glaze, W. H.; Kang, J. W.; Chapin, D. H. Ozone Sci. Eng. 1987, 9, 335–352.
2. Domènech, X.; Jardim, W. F.; Litter M. I., in: Eliminación de Contaminantes por Fotocatálisis Heterogénea, Blesa, M. A., Ed., Red CYTED VIII-G, 2001, 22–25.
3. Bickley, R. I.; González-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. J. Solid State Chem. 1991, 92, 178–190.
4. Ettlinger, M. Technical Bulletin Pigments, Degussa AG, Inorganic Chemical Products Division: Düsseldorf, 1993, 80, 1–26.
5. Shimizu, N.; Ogino, C.; Dadjour, M. F.; Murata T. Ultrason. Sonochem. 2007, 14, 184–190.
6. Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. M. Appl. Catal. B: Environ. 2002, 39, 75–90.
7. Kamat, P. V.; Huehn, R.; Nicolaescu, R. J. Phys. Chem. B 2002, 106, 788-794.
8. Subramanian, M.; Vijayalakshmi, S.; Venkataraj, S.; Jayavel, R. Thin Solid Films 2008, 516, 3776–3782.
9. Young, R. S. Cobalt. Its chemistry, metallurgy and uses. Ed. Reinhold Publishing Corporation, New York, 1960.
10. Luo, X.; Han, J.; Chu, W.; Wang, X.; Cheng, Q. Mater. Sci. Eng. B 2007, 137, 268–271.
11. Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y. J. Phys. Chem. B, 2006, 110, 20211–20216.
12. Xiao, Q.; Zhang, J.; Xiao, C.; Tan, X. Catal. Commun. 2008, 9, 1247–1253.
13. Morales Gil, P. BSc. Thesis: Síntesis y caracterización de óxidos cobalto – níquel para la reacción de formación de oxígeno. Facultad de Química, UAEM, Mexico, 2001.

Published

2019-06-05

Issue

Section

Regular Articles