Spectroscopic Determination of Optimal Hydration Time of Zircon Surface

Authors

  • Eduardo Ordóñez-Regil Instituto Nacional de Investigaciones Nucleares
  • Genoveva García-Rosales Instituto Nacional de Investigaciones Nucleares
  • Nidia García-González Universidad Autónoma del Estado de México

DOI:

https://doi.org/10.29356/jmcs.v54i3.927

Keywords:

Hydration, Dysprosium, Zircon, Fluorescence.

Abstract

When a mineral surface is immersed in an aqueous solution, it develops an electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO4) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and reliable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis (NAA) showed the presence of trace quantities of Dy3+, Eu3+ and Er3 in the bulk of zircon. The Dy3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 min from only one batch. Both methods showed that the zircon surface have a 16h optimal hydration time.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Ordóñez-Regil, Instituto Nacional de Investigaciones Nucleares

Departamento de Química

Genoveva García-Rosales, Instituto Nacional de Investigaciones Nucleares

Departamento de Química (ININ)

Instituto Tecnológico de Toluca, División de Estudios de Post-Grado

Nidia García-González, Universidad Autónoma del Estado de México

Facultad de Química

References

1. Browski, A. Adv. Colloid Interface Sci. 1998, 93, 135.
2. Viel, P.; Dubois, L.; Lyskawa, J.; Salle, M.; Palacin, S. Applied Surf. Sci. 2007, 253, 3263–3269.
3. Saiano, F.; Ciofaloa, M.; Cacciola, S. O.; Ramirez, S. Water Res. 2005, 39, 2273–2280.
4. Arnold, T.; Zorn, T.; Bernhardt, G.; Nitche, H. Chem. Geol. 1998, 151, 129.
5. Morrison, S. J.; Tripathi,V. S.; Spangler, R. R. J. Contam. Hydrol. 1995, 17, 129.
6. Sposito, G. Chemical Equilibria and Kinetic in Soils, Oxford University Press, Oxford 1994.
7. Gräfe, M.; Beattie, D. A.; Smith, E.; Skinner, W. M.; Singh, B. Colloid Interface Sci. 2008, 322, 399-413.
8. Nore´n, K.; Persson, P. Geoch. Cosmochim. 2007, 71, 5717–5730.
9. García-Rosales, G.; Drot, R.; Mercier-Bion, F.; Lagarde, G.; Simoni, E. J. Colloid Interface Sci. 2009, 333, 104-113.
10. Chvedov, D.; Logan, E. L. B. Colloids Surfac. Phys. 2004, 240, 211–223.
11. Kyung, T. O.; Dongin, K.; Hyeon, H. Y.; Yong, S. A.; Eun, S. L. J. Pharm. 2009, 376, 134-140.
12. Ordoñez-Regil, E.; Drot, R.; Simoni, E. Langmuir 2002, 18, 7977.
13. Galunin, E. D.; Alba, M.; Avilés, M. A.; Santos, M. J.; Vidal, M. J. Hazardous Mater, 2009, 172, 1198-1205.
14. Hanchar, J. M.; Finch, R. J.; Hoskin, P. W. O. Am. Mineral 2001, 86, 667-680.
15. Fenter, P.; Sturchio, N. C. Surface Sci. 2004, 77, 171–258.
16. García-Rosales, G.; Ordóñez-Regil, E.; Drot. R.; Pérez, M. Rev. Intern. Inf. Tecnol. 2004, 15, 39-45.
17. Mungchamnankit, A.; Limsuwan, P.; Thongcham, K.; Meejoo, S. J. Mag. Mag. Mater. 2008, 320, 479-482.
18. Nasdala, L.; Hanchar, J. M.; Kronz, A.; Whitehouse, M. J. Chem. Geol. 2005, 220, 83-103.
19. Whitehouse, M. J., Geochronology: linking the isotopic record with petrology and textures. Ed. Geological Society of London, 2003, p 50.
20. Xia, Q.-X.; Zheng, Y.-F., Hu, Z. Lithos 2010, 114, 385-412.
21. Siyanbola, W. O.; Fasasi, A. Y.; Funtua, I. I.; Fasasi, M. K.; Tubosun, I. A.; Pelemo, D. A.; Adesiyan, T. A. Nuclear Inst. Met. Physics Res. B. 2005, 239, 426-432.
22. Gaft, M.; Panczer, G.; Reisfeld, R.; Shinno, I. J. Alloys Compd. 2000, 300-301, 267-274.
23. Lis, S. J. Alloy Compd. 2002, 341, 45–50.
24. Gaft, M.; Panczer, G.; Reisfeld, R.; Shinno, I.; Champagnon, B.; Boulon, G. J. Lumin. 2000, 87-89, 1032-1035.
25. Nasdala, L.; Hanchar, J. M.; Rhede, D.; Kennedy, A. K.; Váczi, T. Chem. Geology 2010, 269, 290-300.
26. Lang, M.; Zhang, F.; Lian, J.; Trautmann, C.; Neumann, R.; Ewing, R.C. Earth Planetary Sci. 2008, 269, 291-295.
27. Perron, H.; Vandenborre, J.; Domain, C.; Drot, R.; Roques, J.; Simoni, E.; Ehrhardt, J.-J.; Catalette, H. Surf. Sci. 2007, 601, 518–527.
28. Lomenech, C.; Simoni, E.; Drot, R.; Ehrhardt J.-J.; Mielczarski, J. J. Colloid Interf. Sci. 2003, 261, 221-232.
29. Dzombak, D. A.; Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley & Sons Eds, New York, 1990.
30. Finck, N.; Drot, R.; Mercier-Bion, F.; Simoni, E.; Catalette, H. J. Colloid Interf. Sci. 2007, 312, 230–236.
31. Dai, P.-L.; Tsai, B.-S.; Tsai, Y.-Y.; Chen, H.-L.; Fang, T.-H.; Liao, K.-H.; Chang, Y.-S. Optical Mater. 2009, 32, 392–397.
32. Tsai, Y.-Y.; Chen, H.-L.; Fang, T.-H.; Liao, K.-H.; Chang, Y.-S. Optical Mater. 2009, 32, 392-397.
33. Hussin, R.; Hamdan, S.; Fazliana, D. N.; Halim, A.; Shawal Husin, M. Mater.Chem.Physics, 2010, 121, 37-41.
34. Wen-Xian, L.; Yu-Shan, Z.; Xiao-Jun, S.; Wen-Juan, C.; Tie, R.; Xiao-Yan, S. J. Lumin. 2010, in press.
35. Zhao, J.; Huang, L.; Wang, Y.; Zhu J. Physica B: Cond. Matter 2005, 362, 103-107.

Published

2019-06-05

Issue

Section

Regular Articles

Most read articles by the same author(s)