Spectroscopic Determination of Optimal Hydration Time of Zircon Surface
DOI:
https://doi.org/10.29356/jmcs.v54i3.927Keywords:
Hydration, Dysprosium, Zircon, Fluorescence.Abstract
When a mineral surface is immersed in an aqueous solution, it develops an electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO4) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and reliable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis (NAA) showed the presence of trace quantities of Dy3+, Eu3+ and Er3 in the bulk of zircon. The Dy3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 min from only one batch. Both methods showed that the zircon surface have a 16h optimal hydration time.
Downloads
References
2. Viel, P.; Dubois, L.; Lyskawa, J.; Salle, M.; Palacin, S. Applied Surf. Sci. 2007, 253, 3263–3269.
3. Saiano, F.; Ciofaloa, M.; Cacciola, S. O.; Ramirez, S. Water Res. 2005, 39, 2273–2280.
4. Arnold, T.; Zorn, T.; Bernhardt, G.; Nitche, H. Chem. Geol. 1998, 151, 129.
5. Morrison, S. J.; Tripathi,V. S.; Spangler, R. R. J. Contam. Hydrol. 1995, 17, 129.
6. Sposito, G. Chemical Equilibria and Kinetic in Soils, Oxford University Press, Oxford 1994.
7. Gräfe, M.; Beattie, D. A.; Smith, E.; Skinner, W. M.; Singh, B. Colloid Interface Sci. 2008, 322, 399-413.
8. Nore´n, K.; Persson, P. Geoch. Cosmochim. 2007, 71, 5717–5730.
9. García-Rosales, G.; Drot, R.; Mercier-Bion, F.; Lagarde, G.; Simoni, E. J. Colloid Interface Sci. 2009, 333, 104-113.
10. Chvedov, D.; Logan, E. L. B. Colloids Surfac. Phys. 2004, 240, 211–223.
11. Kyung, T. O.; Dongin, K.; Hyeon, H. Y.; Yong, S. A.; Eun, S. L. J. Pharm. 2009, 376, 134-140.
12. Ordoñez-Regil, E.; Drot, R.; Simoni, E. Langmuir 2002, 18, 7977.
13. Galunin, E. D.; Alba, M.; Avilés, M. A.; Santos, M. J.; Vidal, M. J. Hazardous Mater, 2009, 172, 1198-1205.
14. Hanchar, J. M.; Finch, R. J.; Hoskin, P. W. O. Am. Mineral 2001, 86, 667-680.
15. Fenter, P.; Sturchio, N. C. Surface Sci. 2004, 77, 171–258.
16. García-Rosales, G.; Ordóñez-Regil, E.; Drot. R.; Pérez, M. Rev. Intern. Inf. Tecnol. 2004, 15, 39-45.
17. Mungchamnankit, A.; Limsuwan, P.; Thongcham, K.; Meejoo, S. J. Mag. Mag. Mater. 2008, 320, 479-482.
18. Nasdala, L.; Hanchar, J. M.; Kronz, A.; Whitehouse, M. J. Chem. Geol. 2005, 220, 83-103.
19. Whitehouse, M. J., Geochronology: linking the isotopic record with petrology and textures. Ed. Geological Society of London, 2003, p 50.
20. Xia, Q.-X.; Zheng, Y.-F., Hu, Z. Lithos 2010, 114, 385-412.
21. Siyanbola, W. O.; Fasasi, A. Y.; Funtua, I. I.; Fasasi, M. K.; Tubosun, I. A.; Pelemo, D. A.; Adesiyan, T. A. Nuclear Inst. Met. Physics Res. B. 2005, 239, 426-432.
22. Gaft, M.; Panczer, G.; Reisfeld, R.; Shinno, I. J. Alloys Compd. 2000, 300-301, 267-274.
23. Lis, S. J. Alloy Compd. 2002, 341, 45–50.
24. Gaft, M.; Panczer, G.; Reisfeld, R.; Shinno, I.; Champagnon, B.; Boulon, G. J. Lumin. 2000, 87-89, 1032-1035.
25. Nasdala, L.; Hanchar, J. M.; Rhede, D.; Kennedy, A. K.; Váczi, T. Chem. Geology 2010, 269, 290-300.
26. Lang, M.; Zhang, F.; Lian, J.; Trautmann, C.; Neumann, R.; Ewing, R.C. Earth Planetary Sci. 2008, 269, 291-295.
27. Perron, H.; Vandenborre, J.; Domain, C.; Drot, R.; Roques, J.; Simoni, E.; Ehrhardt, J.-J.; Catalette, H. Surf. Sci. 2007, 601, 518–527.
28. Lomenech, C.; Simoni, E.; Drot, R.; Ehrhardt J.-J.; Mielczarski, J. J. Colloid Interf. Sci. 2003, 261, 221-232.
29. Dzombak, D. A.; Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley & Sons Eds, New York, 1990.
30. Finck, N.; Drot, R.; Mercier-Bion, F.; Simoni, E.; Catalette, H. J. Colloid Interf. Sci. 2007, 312, 230–236.
31. Dai, P.-L.; Tsai, B.-S.; Tsai, Y.-Y.; Chen, H.-L.; Fang, T.-H.; Liao, K.-H.; Chang, Y.-S. Optical Mater. 2009, 32, 392–397.
32. Tsai, Y.-Y.; Chen, H.-L.; Fang, T.-H.; Liao, K.-H.; Chang, Y.-S. Optical Mater. 2009, 32, 392-397.
33. Hussin, R.; Hamdan, S.; Fazliana, D. N.; Halim, A.; Shawal Husin, M. Mater.Chem.Physics, 2010, 121, 37-41.
34. Wen-Xian, L.; Yu-Shan, Z.; Xiao-Jun, S.; Wen-Juan, C.; Tie, R.; Xiao-Yan, S. J. Lumin. 2010, in press.
35. Zhao, J.; Huang, L.; Wang, Y.; Zhu J. Physica B: Cond. Matter 2005, 362, 103-107.
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.