Membrane Model to Explain the Participation of Carotens and the Changes in Energy in Photosynthesis

Authors

  • Federico García-Jiménez Universidad Nacional Autónoma de México
  • José Luis Sánchez Millán Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán. Universidad Nacional Autónoma de México.
  • Yolanda Castells Universidad Nacional Autónoma de México
  • Ofelia Collera Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v55i3.818

Keywords:

Photosynthesis, Tyrosine Z, Carotenoids, P680, Pheophytin.

Abstract

We have found several bands in the visible and near infrared that are related to the primary process of photosynthesis. Starting from the value of 1830 mV (677.5 nm) which was found by some authors and corresponds to activated PSII, there is a first loss of 580 mV leading to a carotenoid cation (Phe/Car+) formation which is in close contact with pheophytin (Phe) in accordance with previous works leaving P680/P680+ with an energy of 1250 mV. We propose that in this process the carotenes may change their stereochemistry from trans to cis thus avoiding the electron return path.

Downloads

Download data is not yet available.

Author Biographies

Federico García-Jiménez, Universidad Nacional Autónoma de México

Instituto de Química

José Luis Sánchez Millán, Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán. Universidad Nacional Autónoma de México.

Instituto de Química.

Cátedras de investigación: Mejoramiento de plantas comestibles. Química de suelos, plantas y agua.

 

Yolanda Castells, Universidad Nacional Autónoma de México

Escuela Nacional Preparatoria, Plantel 6, Antonio Caso

Ofelia Collera, Universidad Nacional Autónoma de México

Instituto de Química

References

Diner, B. A.; Babcok, G. T., in: Oxygenic Photosynthesis in the light reactions, Ort, D., Charles. F., Ed., Kluwer Academic Publlishers, Dordrecht, 1996, 213-247.

Noguchi, T.; Tomo, T.; Inoue, Y. Biochemistry 1998, 37, 13614-13625.

Faller, P.; Maly, T. Rutherford, A. W.; MacMillan, F. Biochemistry 2000, 40, 6431-6440.

Hanley, J.; Deligiannakis, Y.; Pascal, A.; Faller, P.; Rutherford, A. W. Biochemistry 1999, 26, 8190-8195.

Faller, P.; Pascal, A.; Rutherford, A. W. Biochemistry 2001, 40, 6431-6440.

Novel, P. S. Physicochemical and environmental plant physiology. Elsevier Academic Press, 2005.

Diner, B. A.; Rappaport, F. Annu. Rev. Plant Biol. 2002, 53, 551-580.

Loll, B.; Kern, J.; Sanger, W.; Zouni, A.; Biesiadka, J. Nature 2005, 438, 1040-1044.

Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K., Barber, J.; Iwata, S. Science 2004, 303, 1831-1838.

Biesiadka, J.; Loll, B.; Kern, J.; Irrgang, K. D.; Zouni, A. Phys. Chem. Chem. Phys. 2004, 6, 4733-4736.

Kamiya, N.; Shen, J. R. PNAS 2003, 100, 98-103.

Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.; Kraus. N,; Sanger, W.; Orth, P. Nature 2001, 409, 739 -743.

Telfer, A. Philos. Trans. Royal Soc. 2002, 357, 1431-1440.

Malkin, R.; Niyogi, K. In: Biochemistry & Molecular Biology of Plants. Buchanan, B. B.; Gruissem, W.; Jones, R. L. Eds. American Society of Plant Physiologists, USA, 2000, 570 - 575.

Klimov, V.; Allakverdiev, V.; Demeter, S. I.; Krasnovsky, A. A. Dokl. Akad. Naukii S.S.S.R. 1978, 249, 227-230.

Leeuwen, Van, P. J.; Nieven, M. C.; Meent, Van, E. J.; Dekker,

J. P.; Gokom, Van, H. J. Photosynth. Res. 1991, 28, 149 - 153.

Heinzeand, I.; Holger D. Phys. Chem. 1996, 100, 2008-2013.

Haumann, A.; Mulkidjanian, A.; Junge, W. Biochemistry 1999, 38, 1258-1267.

Candeias, L. P.; Turconi, S.; Nugent, J. H. A. Biochim. Biophys. Act. 1998, 1363, 1-5.

Boussac, A.; Etienne, A. L. Biochim. Biophys Acta 1984, 766, 576-581.

Vass, I.; Styring, S. Biochemistry 1991, 30, 830-839.

Grabolle, M.; Dau, H. Biochem. Biophys. Acta 2005, 1708, 209-218.

Gibasiewicz, K.; Dobek, A.; Breton, J.; Liebl, W. Biophys. J. 2001, 80, 1617-1630.

Jeans, C.; Schilstra, M. J.; Klug, D. R. Biochemistry 2002, 41, 5015-5023.

Dau, H.; Sauer, K., Biochim. Biophys Acta 1996, 1273, 1

Downloads

Published

2019-03-25

Issue

Section

Regular Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.