UV Spectrophotometric Determination of Thermodynamic Dissociation Constants of Some Aromatic Hydrazones in Acid Media

Authors

  • Mirjana Jankulovska Cyril and Methodius University
  • Ilinka Spirevska Ss Cyril and Methodius University
  • Vesna Dimova Ss Cyril and Methodius University
  • Milena Jankulovska University Ss Kliment Ohridski

DOI:

https://doi.org/10.29356/jmcs.v63i4.794

Keywords:

p-nitro-p-substituted benzoylhydrazones, dissociation constants, protonation, UV spectroscopy, semiempirical AM1 and PM3 methods

Abstract

The spectral behavior of some p-nitro-p-substituted benzoylhydrazones in the perchloric acid media was followed, applying the UV spectroscopy. The position of the absorption maximum in the spectra was defined in acidic media and the electronic transitions were discussed, as well (7<pH<1). The equilibrium between neutral and protonated form was investigated in the ethanol-water (V/V, 1:1) solutions. The observed changes in the UV spectra suggested that protonation process took place in one step. The pH region of protonation ranges between 1.4 and 2.9. Using the changes in the UV spectra which appear as a result of the protonation reaction the stoichiometric dissociation constants were determined numerically (pKBH+ = n·pH + logI) and graphically (intercept of the dependence of logI on pH). Thermodynamic dissociation constants were estimated as an intercept of dependence of pKBH+ on square root of the ionic strength. In order to achieve that, measurements were performed at different ionic strengths: 0.1, 0.25 and 0.5 mol/dm3, adjusted with sodium perchlorate. The obtained thermodynamic pKBH+ values ranged between 2.07 and 2.58. In order to predict proton transfer at a given pH, semiempirical methods AM1 and PM3 were applied. The influence of the substituents present in the p-position of the benzene ring on pKBH+ values of investigated hydrazones was discussed, too. Total energy, binding energy, enthalpy of formation, Gibbs energies of formation, atomic charge and proton affinity values were used to predict protonation site in hydrazone molecule. Furthermore, the stability and the proton affinity of the isomers (E and Z) in which hydrazones exist and their protonated forms were defined.

Downloads

Download data is not yet available.

Author Biographies

Mirjana Jankulovska, Cyril and Methodius University

Faculty of Agricultural Sciences and Food in Skopje.

Ilinka Spirevska, Ss Cyril and Methodius University

Faculty of Natural Sciences and Mathematics in Skopje, Macedonia

Vesna Dimova, Ss Cyril and Methodius University

Faculty of Technology and Metallurgy in Skopje, Macedonia

Milena Jankulovska, University Ss Kliment Ohridski

Chemical-Bromatological-Toxicological Analysis Laboratory, Higher Medical School in Bitola, Macedonia

References

Brehme, R.; Enders, D.; Fernandez R.; Lassaletta, J. M. Eur. J. Org. Chem. 2007, 34, 5629-5660.

Belskaya, N. P.; Dehaen W.; Bakulev, V. A. ARKIVOC, 2010, (i), 275-332.

Banerjee, S.; Mondal, S.; Chakraborty, W.; Sen, S.; Gachhui, R.; Butcher, R. J.; Slawin, A. M. Z.; Mandal C.; Mitra, S. Polyhedron, 2009, 28(13), 2785-2793.

Mao, J.; Wang, Y.; Wan, B.; Kozikowski A. P.; Franzblau, S. G. Chem. Med. Chem. 2007, 2(11), 1624-1630.

Ali, Md. R.; Marella, A.; Alam, Md. T.; Naz, R.; Akhter, M.; Shaquiquzzaman, Md.; Saha R.; Tanwar, O.; Alam Md. M.; Hooda, J. Indonesian J. Pharm., 2012, 23, 193-202.

Kumar, P.; Rai, A.; Singh, M.; Kumar, D.; Sahdev A. K.; Raj V. EC Pharm. Sci. 2016, 23, 278 (2016).

Kumar, N.; Chauhan, L. S.; Dashora N.; Sharma, C. S. Sch. Acad. J. Pharm., 2014, 3(5), 366-373.

Padmini, K.; Jaya Preethi, P.; Divya, M.; Rohini, P.; Lohita, M. Swetha K. Kaladar, P. Int. J Pharm. Res. & Rev. 2013, 2(8), 43-58.

Rollas S.; Küçükgüzel, S.G. Molecules, 2017, 12, 1910-1939.

Singh, R. B.; Jain P.; Singh, R. P. Talanta, 1982, 29, 77-84.

Suvarapu, L. N.; Seo1, Y. K.; Baek S. O.; Ammireddy, V. R. E-Journal of Chemistry, 2012, 9(3), 1288-1304.

Naskar, S.; Naskar, S.; Mondal, S.; Majhi, P. K.; Drew M. G. B.; Chattopadhyay, S. K. Inorg. Chim. Acta, 2011, 371, 100-106.

Singh M.; Raghav, N. Int. J. Pharm. Pharm. Sci. 2011, 3(4), 26-32.

Avila Terra, L. H. S.; da Cunha Areias M. C.; Gaubeur, I.; Encarnacion M.; Suarez-iha V. Spectros. Lett. 1999, 32, 257-271.

Mohan, M.; Gupta, M. P.; Chandra L.; Jha, N. K. Inorg. Chim. Acta, 1988, 151, 61-68

Aggarwal, N.; Kumar, R.; Srivastva, C.; Dureja P.; Khurana, J. M. J. Agric. Food Chem. 2010, 58, 2056-3061.

Liu, M.; Wang, Y.; Wangyang, W. S. Z.; Liu, F.; Cui Y. L.; Duan, Y. S. J Agric Food Chem. 2010, 58, 6859-6863.

Pathare, B.; Tambe, V.; Dhole S.; Patil, V. Int. J. Pharm. 2014, 4(1), 278-285.

Beckett A. H.; Stenlake, J. B. Practical pharmaceutical chemistry. 4th Edition – part one, CBS publishers and distributors PVT LTD, New Delhi, 1997, 88-120.

Brahmankar D. M.; Jaiswal, S. B. Biopharmaceutics & pharmacokinetics. 2nd Ed., Vallabh prakashan, Delhi, 2009, 42-60.

Zalewski R. I.; Géribaldi, S. J. Chem. Soc., Perkin Trans. 1988, 2, 113-115.

Garcia, B.; Casado, R. M.; Castillo, J.; Ibeas, S.; Domingo, I.; Leal, J. M. J. Phys. Org. Chem., 1993, 6, 101-106.

Dewar M. J. S.; Dieter, K. M. J. Am. Chem. Soc. 1986, 108, 8075-8086.

Steawart, J. J. P. J. Comput. Chem. 1989, 10, 209-216.

Ienascu, I. M. C.; Lupea, A. X.; Popescu, I. M.; Padure M. A.; Zamfir, A. D. J. Serb. Chem. Soc. 2009, 74, 847-855.

Rajput A. P.; Rajput, S. S. Int. J Pharm. Tech. Research, 2009, 1(4), 1605-1611.

Jankulovska, M.; ?olan?eska-Ra?enovi?, K.; Dimova, V.; Spirevska I.; Makreski P. Org. Chem., An Ind. J. 2012, 8, 326-334.

Jankulovska, M.; Spirevska I.; Ragenovi?, K. ?. Bull. Chem. Technol. Macedonia, 2006, 25, 29-37.

Davis C. T.; Geissman, T. A. J. Am. Chem. Soc. 1954, 76, 3507-3511.

E. J. King, Acid-Base Equilibria, Pergamon Press, Oxford, 1965, 1.

Dewar, M. J. S.; Zoebisch, E. G.; Healy E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902-3909.

Kireev, V. A. Methods of Practical Calculations in Thermodynamics of Chemical Reactions, Khimiya, Moscow, 1975, 1.

Kristallovich, E. L.; Eshimbetov, A. G.; Chuvylkin, V. D.; Belenkii L. I.; Shakhidoyatov, Kh. M. Chem. Nat. Compd. 2003, 39(5), 495-500.

Echevarria, A.; Nascimento, M.; Gerônimo, V.; Miller J.; Giesbrecht, A. J. Braz. Chem. Soc. 1999, 10(1), 60-64.

Amrallah, A. H.; Abdalla N. A.; Haty, E. El. J. Chin. Chem. Soc. 2006, 53, 697-706.

Jankulovska M. S.; Spirevska, I.; Maced. J. Chem. Chem. Eng. 2014, 33(1), 85-96.

Perisi?-Janji?, N. U.; Lazarevi?, M.; Janji?, J.; Klisareva, Lj.; U. Scientist Phyl. Sciences. 1995, 7, 64-68.

Gaubeur, I.; Vincenza, M. R.; Iha, K.; Vázquez, M. E. S. I.; Eclética química. 2000, 25, 63-76.

Published

2019-12-09

Issue

Section

Regular Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.