Rapid Monitoring of Copper Over a Wide Concentration range by High-Sensitive Potentiometric Membrane Electrode Based on 1-cyano-1-piperidino-2(N- piperidino methyl)-cyclo hexane

Authors

  • Leila Hajiaghababaei Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch
  • Iman Borbor Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch
  • Jamshid Najafpour Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch
  • Mohammad Raouf Darvich Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch
  • Mohammad Reza Ganjali University of Tehran
  • Fateme Dehghan Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch

DOI:

https://doi.org/10.29356/jmcs.v60i2.79

Keywords:

Copper Monitoring, Liquid Membrane Electrode, Poten-tiometric, 1-cyano-1-piperidino-2(N- piperidino methyl)-cyclohexane

Abstract

n this paper, 1-cyano-1-piperidino-2(N- piperidino meth-yl)-cyclohexane was synthesized. The lowest-energy conformer of this molecule (Ligand) with axial and equatorial forms of cyanide toward cyclohexane and local minima corresponding to their complexes with various ions were obtained using Monte Carlo procedure by Molecular Mechanics with MMFF94 method. The calculated results of the Gibbs free energy of the reaction using density functional theory (DFT) show that the thermodynamic reactivity of complexation of copper ion with studied ligand is the best. Finally, a selective and sensitive copper-ion selective liquid membrane electrode for potentiometric monitoring of ultra-trace amounts of Cu2+ was prepared by using 1-cyano-1-piperid-ino-2(N- piperidino methyl)-cyclohexane as an excellent ionophore. This electrode exhibits a Nernstian response for Cu2+ ions over a con-centration range (1.5 × 10-2 to 1.0 × 10-8 mol L-1) with a slope of 28.4±0.4 mV per decade. The limit of detection of the sensor is 6.3 × 10-9 mol L-1. The sensor has a relatively fast response time (<10 s) and a useful working pH range of 5.0–8.5. Interference of some cations was also evaluated. The practical utility of the Cu2+ ion sensor has been demonstrated by using it as an indicator electrode in potentiomet-ric titration of Cu2+ with EDTA and for direct determination of Cu2+ in well water samples.

Downloads

Download data is not yet available.

Author Biographies

Leila Hajiaghababaei, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch

Department of Chemistry

Iman Borbor, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch

Department of Chemistry

Jamshid Najafpour, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch

Department of Chemistry

Mohammad Raouf Darvich, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch

Department of Chemistry

Mohammad Reza Ganjali, University of Tehran

Center of Excellence in Electrochemistry, Faculty of Chemistry

Fateme Dehghan, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch

Department of Chemistry

References

Morrison, G. M.; Handbook on Metal-Ligand Interactions in Bio-logical Fields, In: Berthon G, Vol. 1, Ed., Marcel Dekker, New York, 1995, Chap.7A.

Linder, M. C.; Hazegh-Azam, M. Am. J. Clin. Nutr. 1996, 63, 797S-811S.

Ghazya, S. E.; El-Shazlya, R. M.; El-Shahawib, M. S; Al-Hazmia G. A. A.; El-Asmy, A. A. J. Iranian Chem. Soc. 2006, 3, 140-150.

Ganjali, M. R.; Hosseini, M.; Basiripour, F.; Javanbakht, M.; Hashemi, O. R.; Faal Rastegar, M., Shamsipur, M.; Buchanen, G. W. Anal. Chim.Acta 2002, 464, 181-186.

Faridbod, F.; Ganjali, M. R.; Pirali-Hamedan, M.; Norouzi, P. Int. J. Electrochem. Sci. 2010, 5, 1103-1112.

Ganjali, M. R.; Rafiei-Sarmazdeh, Z.; Poursaberi, T.; Shahtaheri, S. J.; Norouzi, P.; Int. J. Electrochem. Sci. 2012, 7, 1908-1916.

Mousavi, M. F.; Rahmani, A.; Golabi, S. M.; Shamsipur, M.; Shar-ghi, H. Talanta 2001, 55, 305-312.

Cesarino, I.; Marino, G.; Matos, J. R.; Cavalheiro, E. T. G. Ecl. Quím. São Paulo 2007, 32, 29-34.

Balaji, T.; Sasidharan, M.; Matsunaga, H. Anal. Bioanal. Chem. 2006, 384, 488-494.

Ensafi, A. A.; Meghdadi, S.; Allafchian, A. R. Sens. J. IEEE 2008, 8, 248-254.

Mashhadizadeh, M. H.; Sheikhshoaie, I. Talanta 2003, 60, 73-80.

Gupta, V. K.; Jain, S.; Khurana, U. Electroanalysis 1997, 9, 478-480.

Jain, A. K., Sondhi, S. M.; Sharma, V. K. Electroanalysis 2000, 12, 301-305.

Rofouei, M. K.; Mohammadi, M.; Gholivand, M. B. Mater. Sci. Eng. C 2009, 29, 2154-2159.

Ali Khan, A.; Paquiza, L. Desalination 2011, 272, 278.

Jumal, J.; Yamin, B. M.; Ahmad, M.; Heng, L. Y. APCBEE Proce-dia 2012, 3,116.

Ganjali, M. R.; Rezapour, M.; Pirali-Hamedani, M.; Rashedi, H. Int. J. Electrochem. Sci. 2015, 10, 6924-6934.

Fahmy, A.; Youssef, A.; Issa, Y. M.; Shehab, O. R.; Sherief, H. Int.

J. Electrochem. Sci. 2015, 10, 4752-4769.

Bandi, K. R.; Singh, A. K.; Upadhyay, A. Mat. Sci. Engin. C 2014, 34, 149-153.

Sadeghi, S.; Eslahi, M.; Naseri, M. A.; Naeimi, H.; Sharghi; H.; Sameli, A. Electroanalysis 2003, 15, 1327-1333.

Singh, A. K.; Sahani, M. K.; Bandi K. R.; Jain, A.K. Mat. Sci. Eng. C 2014, 41, 206-216.

Ganjali, M. R.; Ghafarloo, A.; Faridbod, F.; Norouzi, P. Int. J. Electrochem. Sci. 2012, 7, 3706-3716.

Poursaberi, T.; Hajiaghababaei, L.; Yousefi, M.; Rouhani, S.; Shamsipur, M.; Kargar-Razi, M.; Moghimi, A.; Aghabazorg, H.; Ganjali, M. R. Electroanalysis 2001, 13, 1513-1517.

Ganjali, M. R.; Hajiaghababaei, L.; Taghvaei-Ganjali, S.; Modjal-lal, A.; Shamsipur, M.; Hosseini, M.; Javanbakht, M. Bull. Korean Chem. Soc. 2004, 25, 177-265.

Ganjali, M. R.; Shams, H.; Faridbod, F.; Hajiaghababaei, L.; No-rouzi, P. Mat. Sci. Eng. C 2009, 29, 1380-1389.

Hajiaghababaei, L.; Abutalebyar, B.; Darvich, M. R.; Shekoftefar, S. Sensor Lett. 2013, 11, 2315-2321.

Hajiaghababaei, L.; Sharafi, A.; Suzangarzadeh, S.; Faridbod, F. Anal. Bioanal. Electrochem. 2013, 5, 481-493.

Hajiaghababaei, L.; Kazemi, S.; Badiei, A. R. Anal. Bioanal. Electrochem. 2012, 4, 246-261.

Downloads

Published

2017-10-12

Similar Articles

You may also start an advanced similarity search for this article.