Synthesis and Properties of Polyurethane Foams Obtained from Cassava Starch and Rice by-products
DOI:
https://doi.org/10.29356/jmcs.v62i3.778Keywords:
Foams, polyurethane, rice biomass, cassava starch, by-productsAbstract
Abstract. The Huila department (Colombia) has a continuous growth in the production of rice, being the second largest national producer with increased production of rice in the central part of the country with yields of 6.8 T/Ha in the first half of 2014, resulting in a large accumulation of waste and inadequate use and management of water resources. The by-products generated in the post-harvest, such as chaff, straw and rice husks, end up being used as fuel with no additional advantage. In this work there were prepared and characterized polyurethane foams obtained by cassava starch and rice biomass mixture. Polyurethane foams are commercially used in horticulture and agriculture, which becomes an alternative solution for the use of biomass. The use of the byproducts of rice in the preparation of polyurethane foams in horticulture and agriculture purposes is proposed here. The polyurethane foams were obtained from mixtures of cassava starch, rice biomass previously treated with 0.1N NaOH, and commercial methylene diphenyl diisocyanate and polyol. The endpoint was the cassava starch and rice biomass wt.% used in the mix. Density, water absorption and hardness of polyurethane foams were determined, and they were characterized by infrared spectroscopy and scanning electron microscopy. 33-44x10-3 g/cm3 y 26-46 x10-3 g/cm3 were the values of densities obtained for cassava starch- and cassava starch and rice biomass-based polyurethane foams, respectively, and they reached a value of water absorption until 353.0 %. Infrared spectra confirmed the N-H functional groups (3301 cm-1) and CO (1309 cm -1) characteristic of the polymer. The cassava starch- and cassava starch and rice biomass-based polyurethane foams got smaller pores (114.4 mm) and (132-580 mm), respectively, compared to pores obtained from commercial foams (1092 mm).
Resumen. El departamento del Huila (Colombia) tiene un crecimiento continuo en la producción de cultivos de arroz, siendo el segundo productor a nivel nacional con la mayor producción de arroz de la zona centro del país con rendimientos del 6.8 T/Ha en el primer semestre del 2014, lo que genera una gran acumulación de residuos y un uso y manejo no adecuado del recurso hídrico. Los subproductos que se generan en la post-cosecha, tales como tamo, paja y cascarilla del arroz, terminan siendo usados como combustibles, sin ningún aprovechamiento adicional. En este trabajo se prepararon y caracterizaron espumas de poliuretano a partir de mezclas de almidón de yuca y biomasa del arroz. Las espumas de poliuretano se usan comercialmente en horticultura y agricultura, como chaquetas retenedoras de agua, agroquímicos y plaguicidas. En esta región del país se cultivan grandes hectáreas de arroz de riego, usando el agua proveniente de quebradas y ríos aledaños y acumulando grandes cantidades de subproductos, tales como paja, tamo y cascarilla del arroz. Las espumas de poliuretano se obtuvieron a partir de mezclas de almidón de yuca y biomasa de arroz tratada previamente con NaOH 0.1N, and metileno difenil diisocianato y poliol comercial. La variable de estudio fue el % p/p de almidón de yuca y biomasa de arroz usada en la mezcla. A las espumas de poliuretano se les determinó su densidad, absorción y dureza, y se caracterizaron por espectroscopía de infrarrojo y microscopía electrónica de barrido. Las espumas de poliuretano preparadas a partir de almidón de yuca y de almidón de yuca y biomasa de arroz obtuvieron valores de densidad fueron 33-44x10-3 g/cm3 y 26-46x10-3 g/cm3, respectivamente, alcanzando porcentajes de absorción de hasta 353.0 %. Los espectros de infrarrojo confirmaron los grupos funcionales N-H (3301 cm-1) y C-O (1309 cm-1), característicos del polímero. Las espumas de poliuretano a base de almidón de yuca y de almidón de yuca y biomasa de arroz, obtuvieron los poros más pequeños (114.4 mm) y (132-580 mm), respectivamente, en comparación con las espumas de poliuretano comerciales (1092 mm).
Downloads
References
Liaw, D.; Huang, C.; Liaw, B. Polymer 1998, 39(15), 3529–3535.
Li, S.; Vatanparast, R.; Lemmetyinen, H. Polymer 2000, 41(15), 5571–5576.
Kim, B.S.; Kim, B.K. J. Appl. Polym. Sci. 2005, 97(5), 1961-1969.
Cao, X.; Chang, P.R.; Huneault, M.A. Carbohydr. Polym. 2008, 71(1), 119-125.
Zia, K.M.; Barikani, M.; Zuber, M.; Bhatti, I.A.; Sheikh, M.A. Carbohydr. Polym. 2008, 74(2), 149–158.
Gama, N.V.; Soares, B.; Freire, C.S.R.; Silva, R.; Neto, C.P.; Barros-Timmons, A.; Ferreira, A. Mater. Design 2015, 76 (1), 77–85.
Pan, X.; Saddler, J.N. Biotechnol. Biofuels 2013, 6(12), 1-10.
Ashida, K. Polyurethane and Related Foams Chemistry and Technology. Florida: Taylor & Francis Group, 2007.
Kwon, O.; Yang, S.; Kim, D.; Park, J. J. Appl. Polym. 2006, 103 (3), 1544–1553.
Pechar, T.W.; Sohn, S.; Wilkes, G.L.; Ghosh, S.; Frazier, C.E.; Fornof, A.; Long, T.E. J. Appl. Polym. 2006, 101 (3), 1432–1443.
Yang, S.-R.; Kwon, O.-J.; Kim, D.-H.; Park J.-S. Fiber. Polym. 2007, 8 (3), 257–262.
Tanaka, R.; Hirose, S.; Hatakeyama H. Bioresour. Technol. 2008, 99 (9), 3810–3816.
Abdel Hakim, A.A.; Nassar, M.; Emam, A.; Sultan M. Mater. Chem. Phys. 2011, 129 (1-2), 301–307.
Jin, Y.; Ruan, X.; Cheng, X.; Lü Q. Bioresour. Technol. 2011, 102 (3), 3581–3583.
Soares, B.; Gama, N.V.; Freire, C.S.R.; Barros-Timmons, A.; Brandão, I.; Silva, R.; Pascoal, C.; Ferreira, A. ACS Sustain. Chem. Eng. 2014, 2 (4), 846–854.
Soares, B.; Gama, N.V.; Freire, C.S.R.; Barros-Timmons, A.; Brandão, I.; Silva, R.; Pascoal, C.; Ferreira, A. J. Chem. Technol. Biotechnol. 2014, 90 (8), 250–275.
Romaškevi?, T.; Budrien?, S.; Pielichowski, K.; Pielichowski, J. CHEMIJA 2006, 17(4), 74–89.
DANE. Encuesta Nacional de Arroz, Huila, 2015.
Zia, F.; Zia, K.M.; Zuber, M.; Kamal, Sh.; Aslam, N. Carbohydr. Polym. 2015, 134, 784-798.
Salcedo, J.G.; Montes, E.J.; Pajaro, J.L. Dyna 2009, 76, 121-130.
ASTM. Standard Test Method for Flexible Cellular Materials - Slab, Bonded, and Molded Urethane Foams D-3574-11. In: Annual book of ASTM, Vol 08, Philadelphia: ASTM, 2005.
ASTM. Standard Test Method for Water Absorption of Plastics D-570-98. In annual book of ASTM, Vol 08, Philadelphia: ASTM, 2010.
ASTM. Standard Test Method for Rubber Property- Durometer Hardness ASTM D-2240-05. In In annual book of ASTM, Vol 08, Philadelphia: ASTM, 2005.
Lee, S.H.; Teramoto, Y.; Shiraishi, N. J. Appl. Polym. 2001, 83 (7), 1482-1489.
Corcuera, M.A.; Rueda, L.; Fernandez d’Arlas, B.; Arbelaiz, A.; Marieta, C.; Mondragon, I.; Eceiza, A. Polym. Degrad. Stab. 2010, 95 (11), 2175, 2010.
Benning, C.J. Plastic Foams: the Physics and Chemistry of Product Performance and Process Technology, 1, Wiley, NY, 1969.
Ha, S.K.; Broecker, H.C. Polymer 2002, 43 (19), 5227-5234.
Ribero, V.; Mosiewicki, M.A.; Yoshida, M.I.; da Silva, M.C.; Stefani, P.M.; Marcovich, N.E. Polym. Test. 2013, 32 (2), 438-445.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.