Recyclable Nanomagnetic Fe3O4@APTES catalyst role on the Hydrolysis of Polycarbonate Wastes
DOI:
https://doi.org/10.29356/jmcs.v62i4.651Keywords:
Bisphenol-A, Chemical recycling, Fe3O4@APTES nano-heterocatalyst, Hydrothermal condition, Hydrolysis, Polycarbonate wastesAbstract
In this research, the effect of (3-Aminopropyl) triethoxysilane (APTES) modified Fe3O4 (Fe3O4@APTES) core-shell nanomaterials as the recyclable heterocatalyst on the recovery of bisphenol-A (BPA) from hydrolysis of polycarbonate (PC) wastes were investigated. In the evaluated reactions, water and diethylene glycol (DEG) were used as the green solvent composition and the water as well as magnetic heterocatalyst content were optimized. By examining the results of the above-mentioned reactions, it was observed that by using 25 pbw of water and 2 pbw of magnetic heterocatalyst (both based on total waste and solvent weights), BPA achieved in 100% yield. The Fe3O4@APTES nanomaterials as the heterocatalyst can be recovered and reused up to five intervals with our significant activity losses. The resulting BPA and nanomaterials has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and spectroscopic methods (1H NMR, 13C NMR, FT-IR).
Downloads
References
Taguchi, M.; Ishikawa, Y.; Kataoka, S.; Naka, T.; Funazukuri, T. Catal. Commun. 2016, 84, 93-97 DOI: https://doi.org/10.1016/j.catcom.2016.06.009+
Do, T.; Baral, E. R.; Kim, J. G. Polym. J. 2018, 143, 106-114 DOI: https://doi.org/10.1016/j.polymer.2018.04.015+
Beneš, H.; Paruzel, A.; Trhlíková, O.; Paruzel, B. Eur. Polym. J. 2017, 86, 173-187 DOI: https://doi.org/10.1016/j.eurpolymj.2016.11.030+
Liu, Y. Y.; Qin, G. H.; Song, X. Y.; Ding, J. W.; Liu, F. S.; Yu, S. T.; Ge, X. P. J. Taiwan Inst. Chem. Eng. 2018, 86, 222-229 DOI: https://doi.org/10.1016/j.jtice.2018.02.028+
Tagaya, H.; Katoh, K.; Kadokawa, J. I.; Chiba, K. Polym. Degrad. Stab. 1999, 64, 289-292 DOI: https://doi.org/10.1016/S0141-3910(98)00204-3+
Watanabe, M.; Matsuo, Y.; Matsushita, T.; Inomata, H.; Miyake, T.; Hironaka, K. Polym. Degrad. Stab. 2009, 94, 2157-2162 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.09.010+
Tsintzou, G. P.; Antonakou, E. V.; Achilias, D. S. J. Hazard. Mater. 2012, 241, 137-145 DOI: https://doi.org/10.1016/j.jhazmat.2012.09.027+
Deirram, N.; Rahmat, A. R. APCBEE Proc. 2012, 3, 172-176 DOI: https://doi.org/10.1016/j.apcbee.2012.06.065+
Blazso, M. J. Anal. Appl. Pyrolysis, 1999, 51, 73-88 DOI: https://doi.org/10.1016/S0165-2370(99)00009-1+
Šala, M.; Kitahara, Y.; Takahashi, S.; Fujii, T. Chemosphere 2010, 78, 42-45 DOI: https://doi.org/10.1016/j.chemosphere.2009.10.036+
Antonakou, E. V.; Kalogiannis, K. G.; Stephanidis, S. D.; Triantafyllidis, K. S.; Lappas, A. A.; Achilias, D. S. Waste Manage. 2014, 34, 2487-2493 DOI: https://doi.org/10.1016/j.wasman.2014.08.014+
Hata, S.; Goto, H.; Yamada, E.; Oku, A. Polym. J. 2002, 43, 2109-2116 DOI: https://doi.org/10.1016/S0032-3861(01)00800-X+
Hatakeyama, K.; Kojima, T.; Funazukuri, T. J. Mater. Cycles Waste Manage. 2014, 16, 124-130 DOI: https://doi.org/10.1007/s10163-013-0151-8+
Li, B.; Xue, F.; Wang, J.; Ding, E.; Li, Z. Prog. Rubber Plast. Recycl. Technol. 2017, 33, 39-50.
Pant, D. Process Saf. Environ. Prot. 2016, 100, 281-287 DOI: https://doi.org/10.1016/j.psep.2015.12.012+
Hu, L. C.; Oku, A.; Yamada, E. Polym. J. 1998, 39, 3841-3485 DOI: https://doi.org/10.1016/S0032-3861(97)10298-1+
Liu, F.; Li, L.; Yu, S.; Lv, Z.; Ge, X. J. Hazard. Mater. 2011, 189, 249-254 DOI: https://doi.org/10.1016/j.jhazmat.2011.02.032+
Quaranta, E.; Sgherza, D.; Tartaro, G. Green Chem. 2017, 19, 5422-5434 DOI: 10.1039/C7GC02063E+
Wang, G. S.; Wang, L.; Wei, Z. Y.; Sang, L.; Dong, X. F.; Qi, M.; Chen, G. Y.; Chang, Y.; Zhang, W. X. Chin. J. Polym. Sci. 2013, 31, 1011-1021 DOI: https://doi.org/10.1007/s10118-013-1255-2+
Lee, D. K.; Kang, Y. S.; Lee, C. S.; Stroeve, P. J. Phys. Chem. B 2002, 106, 7267-7271 DOI: https://pubs.acs.org/doi/abs/10.1021/jp014446t+
Liao, M. H.; Chen, D. H. J. Mater. Chem., 2002, 12, 3654-3659 DOI: 10.1039/B207158D+
Yang, T.; Shen, C.; Li, Z.; Zhang, H.; Xiao, C.; Chen, S.; Xu, Z.; Shi, D.; Li, J.; Gao, H. J. Phys. Chem. B, 2005, 109, 23233-23236 DOI: https://pubs.acs.org/doi/abs/10.1021/jp054291f+
Tan, S. T.; Wendorff, J. H.; Pietzonka, C.; Jia, Z. H.; Wang, G. Q. Chem. Phys. Chem., 2005, 6, 1461-1465 DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.200500167+
Yang, H. H.; Zhang, S. Q.; Chen, X. L.; Zhuang, Z. X.; Xu, J. G.; Wang, X. R. J. Anal. Chem. 2004, 76, 1316-1321 DOI: https://pubs.acs.org/doi/abs/10.1021/ac034920m+
Zhang, D.; Liu, Z.; Han, S.; Tang, T., Liu, X.; Han, S.; Lei, B., Zhou, C. Nano Lett. 2004, 4, 2151-2155 DOI: https://pubs.acs.org/doi/abs/10.1021/nl048758u+
Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989-1992 DOI: 10.1126/science.287.5460.1989+
Frias, J. C.; Ma, Y.; Williams, K. J.; Fayad, Z. A.; Fisher, E. A., Nano Lett. 2006, 6, 2220-2224 DOI: https://pubs.acs.org/doi/abs/10.1021/nl061498r+
Caruntu, D.; Caruntu, G.; Chen, Y.; O'Connor, C. J.; Goloverda, G.; Kolesnichenko, V. L. Chem. Mater. 2004, 16, 5527-5534 DOI: https://pubs.acs.org/doi/abs/10.1021/cm0487977+
Yang, X.; Chen, L.; Han, B.; Yang, X.; Duan, H. Polym. J. 2010, 51, 2533-2539 DOI: https://doi.org/10.1016/j.polymer.2010.04.032+
Naeimi, H.; Nazifi, Z. S. J. Nanopart. Res. 2013, 15, 2026-2037 DOI: https://doi.org/10.1007/s11051-013-2026-2+
Jafarzadeh, M.; Soleimani, E.; Norouzi, P.; Adnan, R.; Sepahvand, H. J. Fluorine Chem. 2015, 178, 219-224 DOI: https://doi.org/10.1016/j.jfluchem.2015.08.007+
Alavi Nikje, M. M.; Askarzadeh, M. Prog. Rubber Plast. Recycl. Technol. 2014, 30, 145-152.
Alavi Nikje, M. M.; Askarzadeh, M. Polimery W. 2013, 23, 29-31 DOI: http://dx.doi.org/10.1590/S0104-14282013005000019+
Alavi Nikje, M. M.; Askarzadeh, Polimery W. 2013, 58, 292-294 DOI: dx.doi.org/10.14314/polimery.2013.292+
Alavi Nikje, M. M. Polimery W. 2011, 56, 381-384.
Alavi Nikje, M. M.; Askarzadeh, M. Prog. Rubber Plast. Recycl. Technol. 2013, 29, 169-176.
Emami, S.; Alavi Nikje, M. M. Iran. Polym. J. 2018, 27, 275-286 DOI: https://doi.org/10.1007/s13726-018-0607-8+
Emami, S.; Alavi Nikje, M. M. Green Process Synth. in press DOI: https://doi.org/10.1515/gps-2018-0028+
Emami, S.; Alavi Nikje, M. M. Russ. J. Appl. Chem. 2018, 91, 159-166 DOI: https://doi.org/10.1134/S107042721801024X+
Alavi Nikje, M. M.; Nejad, M. A.; Shabani, K.; Haghshenas, M. Colloid Polym. Sci. 2013, 291, 903-909 DOI: https://doi.org/10.1007/s00396-012-2808-6+
Alavi Nikje, M. M.; Moghaddam, S. T.; Noruzian, M.; Farahmand Nejad, M. A; Shabani, K.; Haghshenas, M.; Shakhesi, S. Colloid Polym. Sci. 2014, 292, 627-633 DOI: https://doi.org/10.1007/s00396-013-3099-2+
Saif, B.; Wang, C.; Chuan, D.; Shuang, S. J. Biomater. Nanobiotechnol. 2015, 6, 267-275 DOI: http://dx.doi.org/10.4236/jbnb.2015.64025+
Massart, R. IEEE trans. Magn. 1981, 17, 1247-1248 DOI: 10.1109/TMAG.1981.1061188+
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.