Electrochemical Impedance Characterization of LiMnPO4 Electrodes with Different Additions of MWCNTs in an Aqueous Electrolyte
DOI:
https://doi.org/10.29356/jmcs.v63i3.627Keywords:
electrochemical impedance spectroscopy, coverage model, aqueous rechargeable lithium battery, lithium magnesium phosphate, lithium intercalation, oxygen evolution reactionAbstract
An electrochemical characterization was performed in electrodes with different weight percentages of LiMnPO4 and multi-walled carbon nanotubes (MWCNTs) in aqueous solution. The redox potential of LiMnPO4 cathode is close to the electrolyte decomposition, which provides an ideal scenario to study multiple reactions on a single electrode surface involving parallel steps and species transformation in both solid and liquid state. Different processes were deconvoluted using cyclic voltammetry and electrochemical impedance spectroscopy. In addition, a surface coverage model was employed to theoretically quantify the limiting step of the electrochemical process. The results show the addition of MWCNTs increased the electrical conductivity of the cathode and improved the intercalation process in LiMnPO4. The optimal concentrations of MWCNTs, which enhanced the electrical properties and decreased the water oxidation effect, were 20 and 40 wt.%.
Downloads
References
Alias, N.; Mohamad, A. A. J. Power Sources 2015, 274 (Supplement C), 237-251.
Wang, G. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q.; Holze, R. Electrochim. Acta 2007, 52 (15), 4911-4915.
Broussely, M.; Planchat, J. P.; Rigobert, G.; Virey, D.; Sarre, G. J. Power Sources 1997, 68 (1), 8-12.
Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788-11827.
Castaneda, H.; Tan, B.; Saunders, J. Electrochim. Acta 2010, 55 (13), 4137-4143.
Köhler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta 2000, 46 (1), 59-65.
Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2 (7), 830-840.
Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2 (9), 760-765.
Wainwright, D. D., R. Mat. Tech. 1996, 11, 9-12.
Wang, Y.-g.; Luo, J.-y.; Wang, C.-x.; Xia, Y.-y. J. Electrochem. Soc. 2006, 153 (8), A1425-A1431.
Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P. J. Power Sources 2012, 216, 222-226.
Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (5), 1609-1613.
Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4 (2), 269-284.
Xu, J.; Dou, S.; Liu, H.; Dai, L. Nano Energy 2013, 2 (4), 439-442.
Doan, T. N. L.; Taniguchi, I. J. Power Sources 2011, 196 (3), 1399-1408.
Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. J. Mater. Chem. A 2013, 1 (11), 3518-3539.
Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151 (9), A1352-A1356.
Barpanda, P.; Djellab, K.; Recham, N.; Armand, M.; Tarascon, J.-M. J. Mater. Chem. 2011, 21 (27), 10143-10152.
Rangappa, D.; Sone, K.; Zhou, Y.; Kudo, T.; Honma, I. J. Mater. Chem. 2011, 21 (39), 15813-15818.
Chiu, T.-M.; Barraza-Fierro, J. I.; Castaneda, H. Electrochim. Acta 2017, 253, 93-103.
Rosas, O.; Saunders, J.; Castaneda, H. Electrochim. Acta 2013, 113, 77-86.
M. D. Levi, G. Salitra, B. Markovsky, H. Teller,a D. Aurbach, Udo Heider,b and Lilia Heider J. Electrochem. Soc. 1999, 146, 1279-1289.
Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; Maglia, F.; Lupart, S.; Lamp, P.; Shao-Horn, Y. J. Phys. Chem. Lett. 2015, 6 (22), 4653-4672.
Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. J. Electrochem. Soc. 2010, 157 (1), A75-A81.
Macdonald, D. D. Electrochim. Acta 2006, 51 (8–9), 1376-1388.
Macdonald, D. D. Electrochim. Acta 1990, 35 (10), 1509-1525.
Chen, Z.; Wang, L. Y.; Yin, G.; Lin, F.; Wang, C. IEEE Trans. on Energy Convers. 2013, 28 (4), 860-870.
Song, J.; Bazant, M. Z. Phys. Rev. Lett. 2018, 120 (11).
Bai, L.; Conway, B. E. Electrochim. Acta 1993, 38 (14), 1803-1815.
Epelboin, I.; Keddam, M.; Lestrade, J. C. Faraday Discuss. Chem. Soc. 1973, 56 (0), 264-275.
Hernandez-Maya, R.; Rosas, O.; Saunders, J.; Castaneda, H. J. Electrochem. Soc. 2015, 162 (4), A687-A696.
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. Nat. Meth. 2012, 9 (7), 671-675.
Hjelm, A.-K.; Lindbergh, G. Electrochim. Acta 2002, 47 (11), 1747-1759.
Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. J. Electrochem. Soc. 1999, 146 (4), 1279-1289.
Barraza-Fierro, J. I.; Campillo-Illanes, B.; Li, X.; Castaneda, H. Metall. Mater. Trans. A 2014, 45 (9), 3981-3994.
Ahmad, A. L.; Ideris, N.; Ooi, B. S.; Low, S. C.; Ismail, A. J. Appl. Sci. 2014, 14 (12), 1299-1303.
Li, G.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5 (6), A135-A137.
Oh, S.-M.; Oh, S.-W.; Yoon, C.-S.; Scrosati, B.; Amine, K.; Sun, Y.-K. Adv. Funct. Mater. 2010, 20 (19), 3260-3265.
Kwon, N.-H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Graetzel, M. Electrochem. Solid-State Lett. 2006, 9 (6), A277-A280.
Levi, M. D.; Aurbach, D. J. Phys. Chem. B 1997, 101 (23), 4630-4640.
Cheng, M.-Y.; Ye, Y.-S.; Chiu, T.-M.; Pan, C.-J.; Hwang, B.-J. J. Power Sources 2014, 253, 27-34.
Huang, J.; Li, Z.; Zhang, J.; Song, S.; Lou, Z.; Wu, N. J. Electrochem. Soc. 2015, 162 (4), A585-A595.
Manjunatha, H.; Venkatesha, T. V.; Suresh, G. S. J. Solid-State Electrochem. 2012, 16 (5), 1941-1952.
Sinha, N. N.; Ragupathy, P.; Vasan, H. N.; Munichandraiah, N. Int. J. Electrochem. Sci. 2008, 3, 691-710.
Taylor, M. L. Technological aspects of corrosion control in metallic systems. The Pennsylvania State University, 2012.
Rammelt, U.; Reinhard, G. Electrochim. Acta 1990, 35 (6), 1045-1049.
Hasted, J. B.; Ritson, D. M.; Collie, C. H. J. Chem. Phys. 1948, 16 (1), 1-21.
Hu, X.; Cheng, Z.; Li, Y.; Ling, Z. J. Alloys Compd. 2015, 651, 290-293.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.