Preparation and Optimization of Agrochemical 2,4-D Controlled Release Microparticles using Designs of Experiments
DOI:
https://doi.org/10.29356/jmcs.v62i1.579Keywords:
Agrochemical, design of experiments, cellulose derivative, controlled release, microspheres, 2, 4-DAbstract
In the present paper, factorial designs of experiments (DOE) were built in the aim of preparing new solid optimized controlled release microparticles charged with the herbicide 2,4-D and, also investigating the influence of some process and encapsulation variables. Composed from mixtures of ethylcellulose (EC) / hydroxy propyl methyl cellulose (HPMC), cellulose acetate butyrate butyryle (CAB) / HPMC and pure CAB as biodegradable polymeric matrices, the microparticles were prepared by emulsification-solvent evaporation technique. Then, the effect of some parameters such as the stirring speed of emulsification, initial drug concentration and polymer concentration were studied. Depending on the selected variables, a large range of microparticles’ size was obtained; from 25 to 208 µm of d10 and the 2,4-D content reached 69%. Also, different release profiles accompanied with a burst effect were obtained. Finaly, by modelling using Minitab 16.1 software, the main and interactive effects of these variables on the microparticles’ chacteristics (size, drug entrapment and drug release) were evaluated.Downloads
References
Tomlin, C. D. S. The Pesticide Manual: A World Compendium, 14th ed.; British Crop Protection Council: Surrey, UK, 2006.
WHO: Environmental Health Criteria 84, Environmental Aspects - 2,4-Dichlorophenoxyacetic acid (2,4-D); International Programme on Chemical Safety, World Health Organization: Geneva, Switzerland, 1989.
RED: Reregistration Eligibility Decision 2,4-D; EPA 738-R-05-002; U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2005.
IARC, The International Agency for Research on Cancer, Monographs on the Evaluation of Carcinogenic Risks to Humans, 2016, 113.
Li K., Wu J-Q, Jiang L-L, Shen L-Z, Li J-Y, He Z-H, Wei P., Zhuo Lv, He M-F. Chemosphere 2017, 171, 40-48.
Moore L.J., Fuentes L., Rodgers J.H., Bowerman W.W., Yarrow G.K., Chao W.Y., et al. Ecotoxicology and Environmental Safety. 2012, 78, 128–133.
Green J.M., and Beestman G.B. Crop Prot. 2007, 26, 320-327.
Sopeña F., Cabrera A., Maqueda C., Morillo E. J. Agric. Food Chem. 2007, 55, 8200-8205.
Sopeña F., Maqueda C., and Morillo E, Cien. Inv. Agr. 2009, 35(1), 27-42.
El Bahri Z. and Tavardet J.-L. Polym. Bulletin. 2007, 59, 709-719.
El Bahri Z. and Taverdet J.-L., J. Appl. Polym. Sci. 2007, 103(4), 2742–2751.
Grillo R., Anderson E. S. Pereirab, Nathalie F. S. Meloa, Raquel M. Porto, Leandro Oliveira Feitosa, Paulo Sergio Tonello, Newton L. Dias Filho, Andre H. Rosa, Renata Lima, Leonardo F. Fraceto, J. Hazard. Mater. 2011, 186, 1645–1651.
Sope˜na F, Villaverde J., Maqueda C., Morillo E., J. Hazard. Mater. 2011, 195, 298– 305.
Anderson E.S. Pereira, Renato Grillo, Nathalie F.S. Mello, Andre H. Rosa, Leonardo F. Fraceto, J. Hazard. Mater. 2012, 231-232, 1– 9.
Takei, T., Yoshida, M., Hatate, Y., Shiomori, K., Kiyoyama, S., Tsutsui, T. and Mizuta, K. J. Appl. Polym. Sci. 2008, 109, 763–766.
Vroman I. and Tighzert L., Biodegradable Polymers, Materials. 2009, 2, 307-344.
Telmo Ojeda, Polymers and the Environment, Chapter 1 in polymer science, 2013 Ojeda, licensee InTech. (http://creativecommons.org/licenses/by/3.0),
Estefânia Vangelie Ramos Campos, Jhones Luiz de Oliveira, Leonardo Fernandes Fraceto, Baljit Singh, Polysaccharides as safer release systems for agrochemicals, Agron. Sustain. Dev. 2015, 35, 47–66.
Estefânia V. R. Campos & Jhones Luiz de Oliveira & Leonardo F. Fraceto & Baljit Singh, Agron. Sustain. Dev. 2015, 35, 47–66.
Wlodarczyk M, Siwek H. Przemysl Chem, 2013, 92, 1513–1516
Laycock BG, Halley PJ. Chapter 14 - starch applications: state of market and new trends. In: Avérous PJH (ed) Starch Polym. Elsevier, Amsterdam, 2014, pp 381–419.
Fernandes C, Encarnação I, Gaspar A et al. Int J Photoenergy 2014, 2014, 1–8.
Grillo R, Pereira AES, Nishisaka CS et al. J Hazard Mater 2014, 278, 163–171.
Abigail MEA, Samuel SM, Chidambaram R.J. Taiwan Inst. Chem. Eng. 2016, 63, 318–326.
Boyandin AN, Volova TG. Int. J. Gen. Chem. 2015, 1, 10–14.
Ding K, Shi L, Zhang L, Zeng T, Yin Y, Yi Y. Polym. Chem. 2016, 7, 899–904.
Shirvani M, Farajollahi E, Bakhtiari S, Ogunseitan, J Environ. Sci. Health B. 2014, 49, 255–262.
Kenari H.S., Imani M., Nodehi A., J. Appl. Polym. Sci. 2013, 127(5).
Rameshwar K. Deshmukh, Jitendra B. Naik, Materials Science and Engineering C 2014, 36, 320–328.
Higuchi, T. J. Pharm. Sci. 1963, 52(12), 1145-1149.
Korsmeyer RW and Peppas NA, J. Control. Rel. 1983, 1:89-98.
Schinnar, R. J. Fluid Mech., 1961, 10, 259-275.
Vankova N, Tcholakova S., Denkov N. D., Ivanov I. B., Vulchev V. D., Danner T., J. Colloid and Interface Science. 2007, 312, 363–380.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.