Kinetics, DFT Study and Antibacterial Activity of Zinc(II) and Copper(II) Terpyridine Complexes
DOI:
https://doi.org/10.29356/jmcs.v62i1.576Keywords:
Zinc(II), copper(II), bioligands, antibacterial activity, structural geometriesAbstract
The kinetics of ligand substitution reactions between zinc(II) and copper(II) terpyridine complexes and biologically relevant nucleophiles were investigated at pH 7.38 as a function of nucleophile concentration. Substitution reactions include two steps of consecutive displacement of the chlorido ligands. The order of reactivity of the investigated nucleophiles for the first reaction step is: glutathione (GSH) > > DL-aspartic acid (DL-Asp) > guanosine-5’-monophosphate (5’-GMP) > inosine-5’-monophosphate (5’-IMP) > L-methionine (L-Met) (for [CuCl2(terpy)]), while for [ZnCl2(terpy)] order is: DL-Asp > GSH > 5’-GMP > 5’-IMP > > L-Met. Chelate formation and pre-equilibrium were obtained for the substitution process between [ZnCl2(terpy)] complex and glutathione. Activation parameters support an associative mechanism A or Ia for the both reaction steps. The best antibacterial effect was exhibited against Sarcina lutea, and stronger antibacterial activity of [CuCl2(terpy)] complex than [ZnCl2(terpy)] was observed. In order to verify the structural geometries of investigated complexes in crystal and solute forms, their structures were optimized by DFT method. Based on energetic stability of complexes, it can be concluded that both of complexes make hydrates very easy, but the bond between water molecule and metal ion is pretty week.Downloads
References
Bertini, I.; Gray, H.B.; Stiefel, E.I.; Valentine J.S. Biological Inorganic Chemistry. Structure and Reactivity. Sausalito, CA: University Science Books, 2007; Roat-Malone R.M. Bioinorganic Chemistry: A Short Course. Hoboken, NJ: John Wiley & Sons Inc. 2002.
Bertini, I.; Luchinat, C.; Rosi, M.; Sgamellotti, A; Tarantelli F. Inorg. Chem. 1990, 29, 1460-1463.
Williams, R. J. P. Coord. Chem. Rev. 1990, 100, 573-610.
Pavlov, M.; Siegbahn, P. E. M; Sandström, M. J. Phys. Chem. A. 1998, 102, 219- 228.
Bose, R. N.; Yang, W. W.; Evanics, F. Inorg. Chim. Acta 2005, 358, 2844–2854.
Jany, T.; Moreth, A.; Gruschka, C.; Sischka, A.; Spiering, A.; Dieding, M.; Wang, Y.; Samo, S. H.; Stammler, A.; Bogge, H.; von Mollard.G. F.; Anselmetti, D.; Glaser, T. Inorg. Chem. 2015, 54, 2679–2690.
Chen, H. H.; Kuo, M. T. Anticancer Res. 2013, 33, 4157–4161.
Ohrvik, H.; Thiele, D. J. J. Trace Elem. Med. Biol. 2014, 31, 178–182.
Sokol, L. S. W. L.; Fink, T. D.; Rorenbacher, D. B. Inorg. Chem. 1980, 19, 1263-1226.
Laurenczy, G.; Ducommun, Y.; Merbach, A. E. Inorg. Chem. 1989, 28, 3024-3028.
Ruiz-Azuara, L.; Bravo, M. E. Curr. Med. Chem. 2010, 17(31), 3606-3615.
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Chem. Rev. 2014, 114, 815?862.
West, R. J.; Lincoln, S. F. J. Chem. Soc. Dalton Trans. 1974, 281-284.
(a) Shaban, S. Y.; Heinemann, F. W.; van Eldik, R. Eur. J. Inorg. Chem. 2009, 3111–3118. (b) Hugh Powell, D.; Merbach, A. E.; Fabian, I.; Schindler, van Eldik, R. Inorg. Chem. 1994, 33, 4468-4473. (c) Pearson, R. G.; DeWit, D. G. J. Coord. Chem. 1973, 2, 175-184. (d) Constable, E. C.; Housecroft, C. E.; Price J. R.; Zampese, J. A. CrystEngComm 2010, 12, 3163–3171.
García-Ramos, J. C.; Galindo-Murillo, R.; Tovar-Tovar, A.; Alonso-Saenz, A. L.; Gómez-Vidales, V.; Flores-Alamo, M.; Ortiz-Frade, L.; Cortes-Guzmán, F.; Moreno-Esparza, R.; Campero, A.; Ruiz-Azuara, L. Chem. Eur. J. 2014, 20(42), 13730-13741.
Sigel, H.; Massoud, S. S.; Corfu, N. A. J. Am. Chem. Soc. 1994, 116, 2958-2971.
(a) Arjmand, F.; Muddassir, M. J. Photochem. Photobiol. B 2010, 101, 37?46. (b) Bugar?i?, Ž. D.; Soldatovi?, T.; Jeli?, R.; Algueró B.; Grandas, A. J. Chem. Soc., Dalton Trans. 2004, 3869-3877.
Anbu, S.; Kandaswamy, M.; Suthakaran, P.; Murugan, V.; Varghese, B. J. Inorg. Biochem. 2009, 103, 401?410.
Holm, R. H.; Kennepohl, P.; Solomon, E. Chem. Rev. 1996, 96, 2293-2314.
(a) Tobe, M. L. Burgess, J. Inorganic Reaction Mechanisms, Essex: Addison Wesley Longman Inc. 1999. (b) Huang, Z.; -an Zhang, X.; Bosch, M.; Smith, S. J.; Lippard, S. J. Metallomics 2013, 5, 648-655. (c) Alzoubi, B. M.; Walther, M.; Puchta, R.; van Eldik, R. Dalton Trans. 2012, 41, 6932– 6941. (d) Alzoubi, B. M.; Walther, M.; Puchta, R.; van Eldik, R. Eur. J. Inorg. Chem. 2013, 2059-2069.
Ishizuka, H., Yamamoto, T., Arata, Y.; Fujiwara, S. Bull. Chem. Soc. Jpn. 1973, 46(2), 468-471.
Gomez-Castro, C. Z.; Vela, A.; Quintanar, L.; Grande-Aztatzi, R.; Mineva, T.; Goursot, A. J. Phys. Chem. B 2014, 118(34), 10052-10064.
Mohamed, M. M. A.; El-Sherif, A. A. J. Solution. Chem. 2010, 39, 639–653.
Smith, R. M.; Martel, A. E. Critical Stability Constants, 2nd Suppl., New York, NY: Plenum Press 1989, Vol. 6, p. 20.
Wiseman, D. A.; Sharma, S.; Black, S. M. Biometals 2010, 23, 19–30.
Freedman, J. H.; Ciriolo, M. R.; Peisach, J. Biol. Chem. 1989, 264(10), 5598-5605.
Santi, E.; Facchina, G.; Faccio, R.; Barroso, R. P.; Costa-Filho, A. J.; Borthagaray, G.; Torre, M. H. J. Inorg. Biochem. 2016, 155, 67.
Fernandes, P.; Sousa, I.; Cunha-Silva, L.; Ferrerira, M.; de Castro, B.; Pereira, E. F.; Feio, M. J.; Gameiro, P. J. Inorg. Biochem. 2014, 131, 21–29.
Kong, C.-C.; Zhou, J.-Z.; Yu, J.-H.; Li, S.-L. Acta Cryst. E 2014, E70, m382–m383.
(a) Rojo, T.; Vlasse, M.; Beltran-Poter, D. Acta Cryst. C 1983, C39, 194-199. (b) Schmitt, L.; Labat, G.; Stoeckli-Evans, H. Acta Cryst. E 2010. E66, m1169–m1169.
Gaussian 09, Revision A.08, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
(a) Zhurko, G.A.; Zhurko, D.A.; Chemcraft 1.6, Chemcraft graphical program for working with quantum chemistry results, 2009. chemcraftprog.com/download.html, accessed February 2013. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
Morgan, G.; Burstall, F. H. J. Chem. Soc. 1937, 1649-1655.
Harris, C. M. M.; Lockyer, T. N. Aust. J. Chem. 1970, 23, 1125 - 1133.
Andrews, J. M. J. Antimicrob. Chemoth. 2005, 56, 60-76.
Zhao, Y.; Truhlar, D.G. Theor. Chem. Account 2008, 120, 215–241.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.