Propiconazole nanoencapsulation in biodegradable polymers to obtain pesticide controlled delivery systems.




Nanooencapsulation, Propiconazole, Fungicide, Fusarium, Emulsification and solvent evaporation


The nanoencapsulation of pesticides in biodegradable polymers confers several advantages to conventional agrochemicals, such as protection against losses due volatilization and degradation of the active ingredient, as well as the augment of water dispersion, allowing for their application on crops without requiring the use of organic solvents that could harm the user and the environment. This characteristics could enhance the productivity, reducing both costs and environmental pollution. In this work the propiconazole fungicide, forming part of a commercial formulation as well as in its pure state, was encapsulated using as carriers the biodegradable polymer poly lactic acid (PLA) and the biodegradable co-polymer poly (lactic-co-glicolic) acid, all with the aim of generate controlled fungicide release systems to augment the efficiency of the treatments of the Fusarium dieback disease. The most efficient system obtained presented nanospheres of 146.28 nm and an encapsulation efficiency over 42%. The antifungal activity tests showed that the use of this nanoencapsulated fungicide system enhances the growth inhibition percentage in 5%, obtaining a formulation that presents good dispersion in water without the need of organic emulsifier agents.


Download data is not yet available.

Author Biographies

Felipe Barrera Méndez, Catedrático CONACYT-Instituto de Ecología A.C.

Catedrático CONACYT – Inecol en Nanotecnología

Red de Estudios Moleculares Avanzados 

Diter Augusto Miranda Sánchez, Instituto de Ecología A. C.


Red de Estudios Moleculares Avanzados

Diana Sánchez Rangel, Catedrático CONACYT-Instituto de Ecología A.C.

Catedrático CONACYT – Inecol en Fitopatología

Red de Estudios Moleculares Avanzados 

Israel Bonilla Landa, Instituto de Ecología A.C.

Técnico Académico en Química Orgánica

Red de Estudios Moleculares Avanzados 

José Benjamín Rodríguez Haas, Instituto de Ecología A.C.

Técnico Académico en Biología Molecular y Fitopatología

Red de Estudios Moleculares Avanzados 

Juan Luis Monribot Villanueva, Instituto de Ecología A.C.

Técnico Académico en Productos Naturales

Red de Estudios Moleculares Avanzados 

José Luis Olivares Romero, Instituto de Ecología A.C.

Investigador Titular en Química Orgánica

Red de Estudios Moleculares Avanzados 


Cano Robles, F. K.; Mendoza Cantú, A.; Revista Bio Ciencias 2017,4(3), 164-178. DOI: 10.15741/revbio.04.03.03

Xue, J.; Zan, G.; Wu, Q.; Deng, B.; Zhang, Y.; Huang, H.; Zhang, X.; Inorg. Chem. Front. 2016, 3(3), 354–364. DOI: 10.1039/C5QI00186B

Bramhanwade, K.; Shende, S.; Bonde, S.; Gade, A.; Rai, M.; Environ. Chem. Lett. 2016, 14(2), 229–235. DOI: 10.1007/s10311-015-0543-1

Singh Duhan, J.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S.; Biotechnology Reports 2017, 15, 11–23. DOI: 10.1016/j.btre.2017.03.002

Eatough, M.; Kabashima, J.; Eskalen, A.; Dimson, M.; Mayorquin, J.; Carrillo, J.; Hanlon, C.; Paine, T.; J. Econ. Entomol. 2017, 110(4), 1611–1618. DOI: 110. 1611-1618. 10.1093/jee/tox163.

Ghormade, V.; Deshpande, M. V.; Paknikar, K. M.; Biotechnol. Adv. 2011, 29, 792?803. DOI: 10.1016/j.biotechadv.2011.06.007.

Mogul, M. G.; Akin, H.; Hasirci, N.; Trantolo, D. J.; Gresser, J. D.; Resour. Conserv. Recy. 1996, 16, 289?320.

Lavicoli, I.; Leso, V.; Beezhold, D. H.; Shvedova, A. A.; Toxicol. Appl. Pharm. 2017, 329, 96–111. DOI: 10.1016/j.taap.2017.05.025

Mishra, S.; Singh, R.; Singh, A.; Keswani, C.; Naqvi, A. H.; Singh, H. B.; Yu, J.-H.; Plos One 2014, 9(5): e97881. DOI: 10.1371/journal.pone.0097881

Nuruzzaman, M.; Mahmudur Rahman, M. M.; Liu, Y.; Naidu, R.; Agric. Food Chem. 2016, 64, 1447?1483. DOI: 10.1021/acs.jafc.5b05214

Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G. V.; Jolivet, J.-P.; Wiesner, M. R.; Nat. Nanotechnol. 2009, 4, 634?641. DOI: 10.1038/nnano.2009.242.

Grillo, R.; dos Santos, N. Z. P.; Maruyama, C. R.; Rosa, A. H.; de Lima, R.; Fraceto, L. F.; J. Hazard. Mater. 2012, 231?232, 1?9. DOI: 10.1016/j.jhazmat.2012.06.019

Yan, J.; Huang, K.; Wang, Y.; Liu, S.; Chin. Sci. Bull. 2005, 50, 108?112. DOI: 10.1360/04wb0077

Nair, R.; Varghese, S. H.; Nair, B. G.; Maekawa, T.; Yoshida, Y.; Kumar, D. S.; Plant Sci. 2010, 179, 154?163. DOI: 10.1016/j.plantsci.2010.04.012

Zhang, J.; Li, M.; Fan, T.; Xu, Q.; Wu, Y.; Chen, C.; Huang, Q.; J. Polym. Res. 2013, 20, 1?11.

Lee, J.; Moon, J.; Jeong, J.; Kim, M.; Kim, B.; Choi, M.; Kim, J.; Ha, C.; Macromol. Res. 2016, 24(8), 741-747. DOI 10.1007/s13233-016-4100-y

Chuensangjuna, C.; Pechyenb, C.; Sirisansaneeyakula, S.; Energy Procedia. 2013, 34, 73 – 82. DOI: 10.1016/j.egypro.2013.06.735

Hwisa, N.; Katakam, P.; Rao, B.; Kumari, S.; VRI Bio.l Med. Chem. 2013, 1(1), 1, 8-22. DOI: 10.14259/bmc.v1i1.29





Regular Articles

Most read articles by the same author(s)