Highly-polar layered double hydroxides are efficient adsorbents of low-concentrated trihalomethanes present in water

Authors

  • Alejandra Morales Universidad Nacional Autónoma de México
  • Magali Hernández Universidad Nacional Autónoma de México
  • Erik Pérez-Ramírez Universidad Nacional Autónoma de México
  • Ariel Guzmán-Vargas Instituto Politécnico Nacional
  • Enrique Jaime Lima Muñoz Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v62i3.557

Keywords:

Adsorption, Trihalomethanes, Layered Double Hydroxides

Abstract

Abstract. Replacement of (Al(OH)6)3- blocks by (AlF6)3- was explored as a strategy to modify the dipolarity of layered double hydroxides materials (LDHs). The presence of fluorine augments the dipolarity/polarizability of LDHs. LDHs were tested as adsorbents of the trihalomethanes CHCl3 and CHBr3 that are present (low concentrated) in water. Fluorinated LDHs were significantly more efficient compared to that without fluorine. Thermal treated fluorinated LDHs are able to remove 95% and 90% of CHCl3 and CHBr3, respectively, present in low concentrated aqueous solutions. The effect of concentration of triahalomethanes, time of contact and structure of adsorbent were explored.  Linear isotherms were obtained when un-fluorinated adsorbents were used but the isotherm turns to match that of Freundlich-type when adsorbent contains fluorine.

 

Resumen. La sustitución de iones  de (Al (OH)6) 3- por (AlF6)3- se investigó como una estrategia para modificar la dipolaridad de los hidróxidos dobles laminares (HDL). La presencia de flúor aumenta la dipolaridad / polarizabilidad de los HDL. Los HDL se probaron como adsorbentes de los trihalometanos CHCl3 y CHBr3 presentes a bajas concentraciones en agua. Los HDL fluorados fueron significativamente más eficientes en comparación con los que no contenían  flúor. Los HDL fluorados tratados térmicamente pueden eliminar 95% y 90% de CHCl3 y CHBr3, respectivamente, presentes en soluciones acuosas a baja concentración. Se examinó el efecto de la concentración de trihalometanos, el tiempo de contacto y la estructura del adsorbente. Se obtuvieron isotermas lineales cuando se usaron adsorbentes no fluorados; en contraste, cuando el adsorbente contiene flúor la isoterma coincide con la de tipo Freundlich.

Downloads

Download data is not yet available.

Author Biography

Enrique Jaime Lima Muñoz, Universidad Nacional Autónoma de México

Faculty of Sciences, Department of Physics

References

Yang, Y; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, Y. F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of The Total Env. 2017, 596–597, 303-320.

U.S. Environmental Protection Agency (U.S. EPA), 2012a. Impaired Waters and Total Maximum Daily Loads.

Arnone, R.D.; Walling, J.P. Waterborne pathogens in urban watersheds, J. Water Health .2007, 5 , 149–162

Hodgeson, J.W.; Cohen, A.L.; Munch, D.J. Determination of Chlorination Disinfection byproducts, Chlorinated Solvents, and Halogenated Pesticides/herbicides in Drinking Water by Liquid–liquid Extraction and Gas Chromatography with Electron Capture Detection. EPA, Cincinnati USA, 1990.

Lantagne, D.S.; Blount, B.C.; Cardinali, F.; Quick, R. Disinfection by-product formation and mitigation strategies in point-of-use chlorination of turbid and non-turbid waters in western Kenya. J. Water Health. 2008, 6, 67-82.

Gopal, K.; Tripathy, S.S.; Bersillon, J.L.; Dubey, S.P. Chlorination byproducts, their toxicodynamics and removal from drinking water, J. Hazard. Mater. 2007,140, 1–6.

Verma, K.; Guptab, A.B.; Sing, A. Optimization of chlorination process and analysis of THMs to mitigate ill efects of sewage irrigation. J. Env. Chem. Eng. 2017, 5, 3540–3549.

Filloux; E.; Gallard, H.; Croué, J.-P. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling. Water Res. 2012 46, 5531-5540.

Gan, X.; Karanfil, T.; Kaplan Bekaroglu, S.S.; Shan, J. The control of N-DBP and C-DBP precursors with MIEX®, Water Res. 2013, 47, 1344-1352.

Gan, X.; Kim, D.; Karanfil, T. MIEX treatment of an effluent-impacted stream. J. Am. Water Works Assoc. 2013, 105, E195-E206.

T.V. Nguyen, R. Zhang, S. Vigneswaran, H.H. Ngo, J. Kandasamy, P. Mathes, Removal of organic matter from effluents by magnetic ion exchange (MIEX®). Desalination. 2011, 276, 96-102.

Wang, J.; Li, H.; Li, A.; Shuang, C.; Zhou, Q. Dissolved organic matter removal by magnetic anion exchange resin and released ion elimination by electrolysis. Chem. Eng. J. 2014, 253, 237-242.

Miyata, S. Physico-chemical properties of synthetic hydrotalcites in relation to composition Clays. Clay Minerals. 1980, 28, 50-56.

Meyn, M. ; Beneke, K. ; Lagaly, G. Anion-exchange reactions of layered double hydroxides. Inorg. Chem. 1990, 29, 5201-5207.

Rius, J.; Plana, F. Contribution to the superstructure resolution of the double layer mineral motukoreaite. Neues Jahrbuch fur Mineralogie Monatshefte.1986, 263-272.

Choy, J.-H.; Jung, J.-S.; Oh, J.-M. ; Jeong, M. Park.; J.; Kang, Y.-K.; Han, O.-J. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomater. 2004, 25, 3059-3064

Nakayama, H.; Wada, N.; Tsuhako, M. Intercalation of amino acids and peptides into Mg–Al layered double hydroxide by reconstruction method. Int. J. Pharm. 2004, 269, 469–478.

Stanimirova, T.S.; Kirov, G.; Donolova, E.J. Mechanism of hydrotalcite regeneration. Mater. Sci. Lett. 2001, 20, 453-455.

Li C.; Wei, M.; Evans, D. G.; Duan, X. Layered Double Hydroxide-based Nanomaterials as Highly Efficient Catalysts and Adsorbents. Small. 2014, 10, 4469–4486.

Laguna, H; Ibarra, I.; Loera, S.; Lima, E.; Lara, V. Hydrotalcite-Like Compounds Hosting Azoic Dyes: Non Toxic Hybrid Pigments. Micr. Mes. Mater. 2007, 98, 234-241.

Lima, E.; Martínez-Ortiz, M. J.; Gutiérrez Reyes, R.I.; Vera, M. Fluorinated Hydrotalcites: The Addition of Highly Electronegative Species in Layered Double Hydroxides To Tune Basicity. Inorg. Chem. 2012, 51, 7774–7781.

Lima, E.; Pfeiffer, H.; Flores, J. Some consequences of the fluorination of brucite-like layers in layered double hydroxides: Adsorption. Appl. Clay. Sc. 2014, 88-89, 26-32.

Spange, S.; Zimmermann, Y.; Graeser, A. Hydrogen-Bond-Donating Acidity and Dipolarity/Polarizability of Surfaces within Silica Gels and Mesoporous MCM-41 Materials. Chem. Mater. 1999, 11, 3245–3251

Spange, S.; Schmidt, C.; Kricheldorf, H. R. Probing the Surface Polarity of Poly(?-amino acids) and ?-Amino Acid Crystals with Genuine Solvatochromic Dyes. Langmuir. 2001, 17, 856–865.

Spange, S.; Prause, S.; Vilsmeier, E.; Thiel, W.R. Probing surface basicity of solid acids with an aminobenzodifurandione dye as the solvatochromic probe. J. Phys. Chem. B. 2005, 109, 7280-7289.

Lopez, T.; Bosch, P.; Ramos, E.; Gomez, R.; Novaro, O.; Acosta, D.; Figueras, F. Synthesis and Characterization of Sol?Gel Hydrotalcites. Structure and Texture. Langmuir. 1996, 12, 189–192.

Lavalley, J. C. Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal. Today. 1996, 27, 377?401.

Sampieri, A.; Lima, E. On the Acid? Base Properties of Microwave Irradiated Hydrotalcite-like Compounds Containing Zn2+ and Mn2+. Langmuir. 2009, 25, 3634?3639.

Tsuji, H.; Okamura-Yoshida, A.; Shishido, T.; Hattori, H. Dynamic Behavior of Carbonate Species on Metal Oxide Surface: Oxygen Scrambling between Adsorbed Carbon Dioxide and Oxide Surface. Langmuir. 2003, 19, 8793–8800.

Published

2019-04-22

Issue

Section

Regular Articles