Evidence of Radical Intermediate Generated in the Electrochemical Oxidation of Iodide

Authors

  • Ashantha Fernando
  • Suman Parajuli
  • Krishna K. Barakoti
  • Wujian Miao The University of Southern Mississippi Hattiesburg, Mississippi, 39406, USA.
  • Mario A Alpuche Aviles University of Nevada, Reno http://orcid.org/0000-0003-2615-4115

DOI:

https://doi.org/10.29356/jmcs.v63i3.529

Keywords:

Inner sphere, iodide oxidation, dye-sensitized solar cell, two electron oxidation

Abstract

We present evidence of the generation of radical ion formation during the oxidation of iodide on a fluorine doped tin oxide (FTO) electrode in acetonitrile. The cyclic voltammograms for the oxidation of iodide and triiodide on FTO are significantly different as in the case of the oxidation of Pt electrode.  These differences are assigned to kinetic differences on the FTO surface that require significant over potentials to drive the oxidation of iodide and triiodide. We propose that at the highly positive potentials the iodine radical intermediate, I·, becomes thermodynamically stable at FTO. The radical nature of the intermediate was verified by the formation of radicals of the usual traps of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and 2,2,5,5 tetramethyl-1-pyrroline N-oxide (TMPO) when these were added to an electrolyzed solution. Irradiation of an iodine solution causes the homolytic cleavage of I2 and yields the same radical intermediate with TMPO as in the electrolysis experiment. Similar results were obtained from the electrolysis of bromide solutions upon addition of TMPO. Short term electrolysis (< 1 h) gives triiodide as a final product while long-term electrolysis (> 17 h) yields additional byproducts. Byproducts were determined to be organoiodines by gas chromatography-mass spectrometry (GC-MS). Overall, our results are consistent with iodine atoms reacting with the electrolyte during electrolysis at the FTO electrode and with a sequential two-electron transfer process.

Downloads

Download data is not yet available.

Author Biographies

Wujian Miao, The University of Southern Mississippi Hattiesburg, Mississippi, 39406, USA.

 Professor

Department of Chemistry and Biochemistry

Mario A Alpuche Aviles, University of Nevada, Reno

Associate Professor

Department of Chemistry

References

Evans, D. H. Chem. Rev. 2008, 108, 2113-2144 DOI: 10.1021/cr068066l. DOI: https://doi.org/10.1021/cr068066l

Chang, J.; Bard, A. J. J. Am. Chem. Soc. 2013, 136, 311-320 DOI: 10.1021/ja409958a. DOI: https://doi.org/10.1021/ja409958a

Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications; John Wiley and Sons, 2001, p 670.

Gileadi, E. J. Electroanal. Chem. 2002, 532, 181. DOI: https://doi.org/10.1016/S0022-0728(02)00766-0

Khoshtariya, D. E.; Dolidze, T. D.; Zusman, L. D.; Lindbergh, G.; Glaser, J. Inorg. Chem. 2002, 41, 1728-1738 DOI: 10.1021/ic0100525. DOI: https://doi.org/10.1021/ic0100525

Downard, A. J.; Bond, A. M.; Clayton, A. J.; Hanton, L. R.; McMorran, D. A. Inorg. Chem. 1996, 35, 7684-7690 DOI: 10.1021/ic960642g. DOI: https://doi.org/10.1021/ic960642g

Liu, H.; Kuznetsov, A. M.; Masliy, A. N.; Ferguson, J. F.; Korshin, G. V. Environ. Sci. Technol. 2011, 46, 1430-1438 DOI: 10.1021/es203084n. DOI: https://doi.org/10.1021/es203084n

Savéant, J. M. Elements of Molecular and Biomolecular Electrochemistry; Wiley-Interscience: Hoboken, New Jersey, 2006, p 203. DOI: https://doi.org/10.1002/0471758078

Evans, D. H. Chem. Rev. 1998, 52, 194-197 DOI: 10.1021/cr068066l. DOI: https://doi.org/10.3891/acta.chem.scand.52-0194

Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L. J. Phys. Chem. B 2001, 105, 1422-1429 DOI: 10.1021/jp003000u. DOI: https://doi.org/10.1021/jp003000u

Liu, Y.; Jennings, J. R.; Huang, Y.; Wang, Q.; Zakeeruddin, S. M.; Gra?tzel, M. J. Phys. Chem. C 2011, 115, 18847-18855 DOI: 10.1021/jp204519s. DOI: https://doi.org/10.1021/jp204519s

Li, D.; Li, H.; Luo, Y.; Li, K.; Meng, Q.; Armand, M.; Chen, L. Adv. Funct. Mater. 2010, 20, 3358-3365 DOI: 10.1002/adfm.201000150. DOI: https://doi.org/10.1002/adfm.201000150

Lee, J.; Lee, C.; Lee, Y.; Cho, K.; Choi, J.; Park, J.-K. J. Solid State Electrochem. 2012, 16, 657-663 DOI: 10.1007/s10008-011-1405-9. DOI: https://doi.org/10.1007/s10008-011-1405-9

Tian, H.; Sun, L. J. Mater. Chem. 2011, 21, 10592-10601 DOI: 10.1039/c1jm10598a. DOI: https://doi.org/10.1039/c1jm10598a

Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S. J. Am. Chem. Soc. 2005, 127, 9648-9654 DOI: 10.1021/ja0506814. DOI: https://doi.org/10.1021/ja0506814

Hagfeldt, A.; Grätzel, M. Acc. Chem. Res. 2000, 33, 269-277 DOI: 10.1021/ar980112j. DOI: https://doi.org/10.1021/ar980112j

Ardo, S.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115-164 DOI: 10.1039/b804321n. DOI: https://doi.org/10.1039/B804321N

Gardner, J. M.; Abrahamsson, M.; Farnum, B. H.; Meyer, G. J. J. Am. Chem. Soc. 2009, 131, 16206-16214 DOI: 10.1021/ja905021c. DOI: https://doi.org/10.1021/ja905021c

Gardner, J. M.; Giaimuccio, J. M.; Meyer, G. J. J. Am. Chem. Soc. 2008, 130, 17252-17253 DOI: 10.1021/ja807703m. DOI: https://doi.org/10.1021/ja807703m

Rowley, J.; Meyer, G. J. J. Phys. Chem. C 2009, 113, 18444-18447 DOI: 10.1021/jp907265x. DOI: https://doi.org/10.1021/jp907265x

Rowley, J. G.; Farnum, B. H.; Ardo, S.; Meyer, G. J. J. Phys. Chem. Lett. 2010, 1, 3132-3140 DOI: 10.1021/jz101311d. DOI: https://doi.org/10.1021/jz101311d

Popov, A. I.; Geske, D. H. J. Am. Chem. Soc. 1958, 80, 1340-1352 DOI: 10.1021/ja01539a018. DOI: https://doi.org/10.1021/ja01539a018

Macagno, V. A.; Giordano, M. C.; Arvía, A. J. Electrochim. Acta 1969, 14, 335-357 DOI: http://dx.doi.org/10.1016/0013-4686(69)85005-X. DOI: https://doi.org/10.1016/0013-4686(69)85005-X

Nakata, R.; Okazaki, S.; Fujinaga, T. J. Electroanal. Chem. 1981, 125, 413-420 DOI: http://dx.doi.org/10.1016/S0022-0728(81)80358-0. DOI: https://doi.org/10.1016/S0022-0728(81)80358-0

Rogers, E. I.; Streeter, I.; Aldous, L.; Hardacre, C.; Compton, R. G. J. Phys. Chem. C 2008, 112, 10976-10981 DOI: 10.1021/jp802934y. DOI: https://doi.org/10.1021/jp802934y

Nelson, I. V.; Iwamoto, R. T. J. Electroanal. Chem. 1964, 7, 218-221 DOI: http://dx.doi.org/10.1016/0022-0728(64)80015-2. DOI: https://doi.org/10.1016/0022-0728(64)80015-2

Bourdillon, C.; Demaille, C.; Moiroux, J.; Saveant, J.-M. J. Am. Chem. Soc. 1995, 117, 11499-11506 DOI: 10.1021/ja00151a013. DOI: https://doi.org/10.1021/ja00151a013

Eberson, L. J. Chem. Soc., Perkin Trans. 2 1994, 171-176 DOI: 10.1039/p29940000171. DOI: https://doi.org/10.1039/p29940000171

Electron paramagnetic resonance: A practicioner's toolkit; John Wiley and Sons, Inc.: Hoboken, New Jersey, 2009.

Duling, D. R. Journal of Magnetic Resonance, Series B 1994, 104, 105-110 DOI: https://doi.org/10.1006/jmrb.1994.1062. DOI: https://doi.org/10.1006/jmrb.1994.1062

Wang, Q.; Rodríguez-López, J.; Bard, A. J. J. Am. Chem. Soc. 2009, 131, 17046-17047 DOI: 10.1021/ja907626t. DOI: https://doi.org/10.1021/ja907626t

Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.; Vasquez-Medrano, R. Green Chem. 2010, 12, 2099-2119 DOI: 10.1039/C0GC00382D. DOI: https://doi.org/10.1039/c0gc00382d

Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230-13319 DOI: 10.1021/acs.chemrev.7b00397. DOI: https://doi.org/10.1021/acs.chemrev.7b00397

Ibanez, J. G.; Frontana-Uribe, B. A.; Vasquez-Medrano, R. J. Mex. Chem. Soc. 2016, 60, 247-260.

×

Additional Files

Published

2019-10-17
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...