Computational Designing of Low Energy Gap Small Molecule Acceptors for Organic Solar Cells

  • Ahmad Irfan King Khalid University
  • Asif Mahmood University of Sargodha
Keywords: Small molecule acceptors, low band gap, organic solar cell, DFT

Abstract

In this study, effort is done to design a series of narrowband-gap small molecule acceptors for organic solar cells. We have predicated the electronic and optical properties using theoretical methods. Results show that the orbital spatial distribution, HOMO/LUMO energy levels, band gap and optical properties can be systematically changedby modification of terminal acceptor units and conjugated system. Most of the acceptors show low energy gaps reveal thermodynamical more stability. Conjugated system help to tune the electronic properties and decrease the band gap of small molecules. Finally, we have identified potential terminal acceptor groups for proficient organic solar cell materials.

Author Biographies

Ahmad Irfan, King Khalid University
  1. Department of Chemistry, Faculty of Science
  2. Research Center for Advanced Materials Science (RCAMS)
Asif Mahmood, University of Sargodha
Department of Chemistry

References

Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.98799

Burroughes, J. H., et al. Nature. 1990, 347, 539-541. http://dx.doi.org/10.1038/347539a0.

Sariciftci, N. S., et al. Science. 1992, 258, 1474-1476. http://dx.doi.org/10.1126/science.258.5087.1474

Carsten, D.; Vladimir, D. Rep. Prog. Phys. 2010, 73, 096401. http://stacks.iop.org/0034-4885/73/i=9/a=096401.

Wurfel, U., et al. Nat. Commun. 2015, 6, http://dx.doi.org/10.1038/ncomms7951

Fleischli, F. D., et al. J. Mater. Chem. C. 2015, 3, 2065-2071. http://dx.doi.org/10.1039/C4TC02279C.

Chen, Y.; Wan, X.; Long, G. Acc. Chem. Res. 2013, 46, 2645-2655. http://dx.doi.org/10.1021/ar400088c.

Roncali, J.; Leriche, P.; Blanchard, P. Adv. Mater. 2014, 26, 3821-3838. http://dx.doi.org/10.1002/adma.201305999.

Li, Y., et al. Energy Environ. Sci. 2010, 3, 1427-1436. http://dx.doi.org/10.1039/C003946B

Ni, W., et al. Chem. Commun. 2015, 51, 4936-4950. http://dx.doi.org/10.1039/C4CC09758K

Zhang, F., et al. J. Mater. Chem. 2011, 21, 17590-17600. http://dx.doi.org/10.1007/s00894-012-1719-2.

Nielsen, C. B., et al. Acc. Chem. Res. 2015, 48, 2803-2812. http://dx.doi.org/10.1021/acs.accounts.5b00199

MURALI, M. G., et al. J. Chem. Sci. 2013, 125, 247-257. http://dx.doi.org/10.1007/s12039-013-0377-y.

Shin, S. A., et al. Synth. Met. 2013, 172, 54-62. http://dx.doi.org/http://doi.org/10.1016/j.synthmet.2013.04.004.

Tamilavan, V., et al. Polymer. 2013, 54, 6125-6132. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2013.09.012.

Wang, T.-L., et al. J Polym. Res. 2013, 20, 213. http://dx.doi.org/10.1007/s10965-013-0213-6.

Ozyurt, F., et al. J Solid State Electr. 2008, 14, 279. http://dx.doi.org/10.1007/s10008-008-0750-9.

Celebi, S., et al. Electrochim. Acta. 2010, 55, 2373-2376. http://dx.doi.org/http://doi.org/10.1016/j.electacta.2009.12.010.

Pamuk, M., et al. Polymer. 2010, 51, 62-68. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2009.11.009.

Tarkuc, S., et al. Eur. Polym. J. 2010, 46, 2199-2205. http://dx.doi.org/http://doi.org/10.1016/j.eurpolymj.2010.08.002.

Esmer, E. N., et al. Mater. Chem. Phys.2011, 131, 519-524. http://dx.doi.org/http://doi.org/10.1016/j.matchemphys.2011.10.014.

Hellström, S., et al. Org. Electron.2011, 12, 1406-1413. http://dx.doi.org/http://doi.org/10.1016/j.orgel.2011.05.008

Sendur, M., et al. J Polym. Sci. Pol. Chem. 2011, 49, 4065-4070. http://dx.doi.org/10.1002/pola.24849.

Ozdemir, S., et al. J. Mater. Chem. 2012, 22, 4687-4694. http://dx.doi.org/10.1039/C2JM16171K.

Carbas, B. B., et al. J. Electroanal. Chem. 2012, 677–680, 9-14. http://dx.doi.org/http://doi.org/10.1016/j.jelechem.2012.05.005

Kivrak, A., et al. React. Funct. Polym. 2012, 72, 613-620. http://dx.doi.org/http://doi.org/10.1016/j.reactfunctpolym.2012.06.007.

Cuesta, V., et al. J. Mater. Chem. A. 2017, 5, 1057-1065. http://dx-.doi.org/10.1039/C6TA09408B

Irfan, A., et al. Comptes Rendus Chimie. 2015, 18, 1289-296 http://dx.doi.org/http://dx.doi.org/10.1016/j.crci.2015.05.020.

Chaudhry, A., et al. J Mol. Model. 2014, 20, 1-11. http://dx.doi.org/10.1007/s00894-014-2547-3.

Zhang, J., et al. J Mol. Model. 2013, 19, 1597-1604. http://dx.doi.org/10.1007/s00894-012-1719-2.

Chaudhry, A. R., et al. J Mol. Model. 2015, 21, 1-16. 10.1007/s00894-015-2743-9

Chaudhry, A. R., et al. J Mol. Model. 2016, 22, 1-13. http://dx.doi.org/10.1007/s00894-016-3121-y

Irfan, A., et al. Optik. 2016, 127, 10148-10157. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.08.007

Irfan, A. Optik. 2014, 125, 4825-4830. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2014.04.050.

Sánchez-Carrera, R. S., et al. J. Phys. Chem. B. 2006, 110, 18904-18911. http://dx.doi.org/10.1021/jp057462p.

Irfan, A.; Al-Sehemi, A. G. J. Saudi. Chem. Soc. 2015, 19, 318-321. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2012.03.005.

Zhu, R., et al. Comput. Theor. Chem. 2016, 1078, 16-22. http://dx-.doi.org/http://dx.doi.org/10.1016/j.comptc.2015.12.017.

Cvejn, D., et al. Dyes and Pigments. 2016, 124, 101-109. http://

dx.doi.org/http://dx.doi.org/10.1016/j.dyepig.2015.09.012.

Irfan, A., et al. Optik. 2016, http://dx.doi.org/10.1016/j.ijleo.2016.12.023

Preat, J.; Jacquemin, D.; Perpète, E. A. Environ. Sci. Technol. 2010, 44, 5666-5671. http://dx.doi.org/10.1021/es100920j.

Preat, J., et al. J. Phys. Chem. C. 2009, 113, 16821-16833. http://dx.doi.org/10.1021/jp904946a.

Huong, V. T. T., et al. J. Phys. Chem. C. 2013, 117, 10175-10184. http://dx.doi.org/10.1021/jp401191a.

Irfan, A., et al. Optik. 2017, 132, 101-110. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.12.023.

Irfan, A., et al. Optik. 2017, 138, 349-358. http://dx.doi.org/10.1016/j.ijleo.2016.12.023.

Irfan, A., et al. J. Saudi. Chem. Soc. 2016, 20, 336-342. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2014.09.009.

Irfan, A., et al. J King Saud Univ. Sci. 2016, http://dx.doi.org/10.1016/j.jksus.2016.10.004, http://dx.doi.org/10.1016/j.jksus.2016.10.004

Aragó, J., et al. J Chem .Theory Comput. 2011, 7, 2068-2077. http://pubs.acs.org/doi/abs/10.1021/ct200203k

Satapathy, S.; Prasad, E. ACS Appl. Mater. Inter. 2016, 8, 26176-26189. http://dx.doi.org/10.1021/acsami.6b09175.

Kityk, A. V. Spectrochim. Acta A. 2014, 128, 370-376. http://dx.doi.org/http://dx.doi.org/10.1016/j.saa.2014.02.109.

Cossi, M., et al. J. Chem. Phys. 2002, 117, 43-54. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.1480445.

Rutledge, L. R.; McAfee, S. M.; Welch, G. C. J. Phys. Chem. A. 2014, 118, 7939-7951. http://dx.doi.org/10.1021/jp505867y.

Cnops, K., et al. Nature Commun. 2014, 5, 3406. http://dx.doi.org/10.1038/ncomms4406

Qin, Y., et al. Adv. Mater. 2016, 10.1002/adma.201601803, n/an/a. http://dx.doi.org/10.1002/adma.201601803.

Feng, J., et al. J. Phys. Chem. C. 2013, 117, 3772-3778. http://dx.doi.org/10.1021/jp310504n

Nalwa, H. S. Handbook of Advanced Electronic and Photonic Materials and Devices. San Diego, CA: Academic, 2001.

Published
01-30-2018