Computational Designing of Low Energy Gap Small Molecule Acceptors for Organic Solar Cells
DOI:
https://doi.org/10.29356/jmcs.v61i4.461Keywords:
Small molecule acceptors, low band gap, organic solar cell, DFTAbstract
In this study, effort is done to design a series of narrowband-gap small molecule acceptors for organic solar cells. We have predicated the electronic and optical properties using theoretical methods. Results show that the orbital spatial distribution, HOMO/LUMO energy levels, band gap and optical properties can be systematically changedby modification of terminal acceptor units and conjugated system. Most of the acceptors show low energy gaps reveal thermodynamical more stability. Conjugated system help to tune the electronic properties and decrease the band gap of small molecules. Finally, we have identified potential terminal acceptor groups for proficient organic solar cell materials.Downloads
References
Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.98799
Burroughes, J. H., et al. Nature. 1990, 347, 539-541. http://dx.doi.org/10.1038/347539a0.
Sariciftci, N. S., et al. Science. 1992, 258, 1474-1476. http://dx.doi.org/10.1126/science.258.5087.1474
Carsten, D.; Vladimir, D. Rep. Prog. Phys. 2010, 73, 096401. http://stacks.iop.org/0034-4885/73/i=9/a=096401.
Wurfel, U., et al. Nat. Commun. 2015, 6, http://dx.doi.org/10.1038/ncomms7951
Fleischli, F. D., et al. J. Mater. Chem. C. 2015, 3, 2065-2071. http://dx.doi.org/10.1039/C4TC02279C.
Chen, Y.; Wan, X.; Long, G. Acc. Chem. Res. 2013, 46, 2645-2655. http://dx.doi.org/10.1021/ar400088c.
Roncali, J.; Leriche, P.; Blanchard, P. Adv. Mater. 2014, 26, 3821-3838. http://dx.doi.org/10.1002/adma.201305999.
Li, Y., et al. Energy Environ. Sci. 2010, 3, 1427-1436. http://dx.doi.org/10.1039/C003946B
Ni, W., et al. Chem. Commun. 2015, 51, 4936-4950. http://dx.doi.org/10.1039/C4CC09758K
Zhang, F., et al. J. Mater. Chem. 2011, 21, 17590-17600. http://dx.doi.org/10.1007/s00894-012-1719-2.
Nielsen, C. B., et al. Acc. Chem. Res. 2015, 48, 2803-2812. http://dx.doi.org/10.1021/acs.accounts.5b00199
MURALI, M. G., et al. J. Chem. Sci. 2013, 125, 247-257. http://dx.doi.org/10.1007/s12039-013-0377-y.
Shin, S. A., et al. Synth. Met. 2013, 172, 54-62. http://dx.doi.org/http://doi.org/10.1016/j.synthmet.2013.04.004.
Tamilavan, V., et al. Polymer. 2013, 54, 6125-6132. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2013.09.012.
Wang, T.-L., et al. J Polym. Res. 2013, 20, 213. http://dx.doi.org/10.1007/s10965-013-0213-6.
Ozyurt, F., et al. J Solid State Electr. 2008, 14, 279. http://dx.doi.org/10.1007/s10008-008-0750-9.
Celebi, S., et al. Electrochim. Acta. 2010, 55, 2373-2376. http://dx.doi.org/http://doi.org/10.1016/j.electacta.2009.12.010.
Pamuk, M., et al. Polymer. 2010, 51, 62-68. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2009.11.009.
Tarkuc, S., et al. Eur. Polym. J. 2010, 46, 2199-2205. http://dx.doi.org/http://doi.org/10.1016/j.eurpolymj.2010.08.002.
Esmer, E. N., et al. Mater. Chem. Phys.2011, 131, 519-524. http://dx.doi.org/http://doi.org/10.1016/j.matchemphys.2011.10.014.
Hellström, S., et al. Org. Electron.2011, 12, 1406-1413. http://dx.doi.org/http://doi.org/10.1016/j.orgel.2011.05.008
Sendur, M., et al. J Polym. Sci. Pol. Chem. 2011, 49, 4065-4070. http://dx.doi.org/10.1002/pola.24849.
Ozdemir, S., et al. J. Mater. Chem. 2012, 22, 4687-4694. http://dx.doi.org/10.1039/C2JM16171K.
Carbas, B. B., et al. J. Electroanal. Chem. 2012, 677–680, 9-14. http://dx.doi.org/http://doi.org/10.1016/j.jelechem.2012.05.005
Kivrak, A., et al. React. Funct. Polym. 2012, 72, 613-620. http://dx.doi.org/http://doi.org/10.1016/j.reactfunctpolym.2012.06.007.
Cuesta, V., et al. J. Mater. Chem. A. 2017, 5, 1057-1065. http://dx-.doi.org/10.1039/C6TA09408B
Irfan, A., et al. Comptes Rendus Chimie. 2015, 18, 1289-296 http://dx.doi.org/http://dx.doi.org/10.1016/j.crci.2015.05.020.
Chaudhry, A., et al. J Mol. Model. 2014, 20, 1-11. http://dx.doi.org/10.1007/s00894-014-2547-3.
Zhang, J., et al. J Mol. Model. 2013, 19, 1597-1604. http://dx.doi.org/10.1007/s00894-012-1719-2.
Chaudhry, A. R., et al. J Mol. Model. 2015, 21, 1-16. 10.1007/s00894-015-2743-9
Chaudhry, A. R., et al. J Mol. Model. 2016, 22, 1-13. http://dx.doi.org/10.1007/s00894-016-3121-y
Irfan, A., et al. Optik. 2016, 127, 10148-10157. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.08.007
Irfan, A. Optik. 2014, 125, 4825-4830. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2014.04.050.
Sánchez-Carrera, R. S., et al. J. Phys. Chem. B. 2006, 110, 18904-18911. http://dx.doi.org/10.1021/jp057462p.
Irfan, A.; Al-Sehemi, A. G. J. Saudi. Chem. Soc. 2015, 19, 318-321. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2012.03.005.
Zhu, R., et al. Comput. Theor. Chem. 2016, 1078, 16-22. http://dx-.doi.org/http://dx.doi.org/10.1016/j.comptc.2015.12.017.
Cvejn, D., et al. Dyes and Pigments. 2016, 124, 101-109. http://
dx.doi.org/http://dx.doi.org/10.1016/j.dyepig.2015.09.012.
Irfan, A., et al. Optik. 2016, http://dx.doi.org/10.1016/j.ijleo.2016.12.023
Preat, J.; Jacquemin, D.; Perpète, E. A. Environ. Sci. Technol. 2010, 44, 5666-5671. http://dx.doi.org/10.1021/es100920j.
Preat, J., et al. J. Phys. Chem. C. 2009, 113, 16821-16833. http://dx.doi.org/10.1021/jp904946a.
Huong, V. T. T., et al. J. Phys. Chem. C. 2013, 117, 10175-10184. http://dx.doi.org/10.1021/jp401191a.
Irfan, A., et al. Optik. 2017, 132, 101-110. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.12.023.
Irfan, A., et al. Optik. 2017, 138, 349-358. http://dx.doi.org/10.1016/j.ijleo.2016.12.023.
Irfan, A., et al. J. Saudi. Chem. Soc. 2016, 20, 336-342. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2014.09.009.
Irfan, A., et al. J King Saud Univ. Sci. 2016, http://dx.doi.org/10.1016/j.jksus.2016.10.004, http://dx.doi.org/10.1016/j.jksus.2016.10.004
Aragó, J., et al. J Chem .Theory Comput. 2011, 7, 2068-2077. http://pubs.acs.org/doi/abs/10.1021/ct200203k
Satapathy, S.; Prasad, E. ACS Appl. Mater. Inter. 2016, 8, 26176-26189. http://dx.doi.org/10.1021/acsami.6b09175.
Kityk, A. V. Spectrochim. Acta A. 2014, 128, 370-376. http://dx.doi.org/http://dx.doi.org/10.1016/j.saa.2014.02.109.
Cossi, M., et al. J. Chem. Phys. 2002, 117, 43-54. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.1480445.
Rutledge, L. R.; McAfee, S. M.; Welch, G. C. J. Phys. Chem. A. 2014, 118, 7939-7951. http://dx.doi.org/10.1021/jp505867y.
Cnops, K., et al. Nature Commun. 2014, 5, 3406. http://dx.doi.org/10.1038/ncomms4406
Qin, Y., et al. Adv. Mater. 2016, 10.1002/adma.201601803, n/an/a. http://dx.doi.org/10.1002/adma.201601803.
Feng, J., et al. J. Phys. Chem. C. 2013, 117, 3772-3778. http://dx.doi.org/10.1021/jp310504n
Nalwa, H. S. Handbook of Advanced Electronic and Photonic Materials and Devices. San Diego, CA: Academic, 2001.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.