Evaluation of Polydimethylsiloxane-Phenylsiloxane as a Coating for Stir Bar Sorptive Extraction

Authors

  • Yamile Pérez-Padilla Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán
  • Saúl Ariel Medina Cetina Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán
  • Alejandro Ávila-Ortega Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán
  • Jesús Alberto Barrón-Zambrano Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán
  • Alfredo Rafael Vilchis-Néstor Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM
  • Cristian Carrera-Figueiras Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán
  • David Muñoz Rodríguez Cuerpo Académico de Química Fundamental y Aplicada, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán http://orcid.org/0000-0002-6606-3835

DOI:

https://doi.org/10.29356/jmcs.v62i2.431

Keywords:

Sol-gel, polydimethylsiloxane, coating, SBSE, polyaromatics, furanics, antibiotics

Abstract

Analytical pretreatment has become environmental-friendly because of material science assistance. In stir bar sorptive extraction (SBSE), a coating is typically used to isolate and preconcentrate organic compounds in aqueous samples. Here, a translucent coating based on polydimethylsiloxane and phenyltriethoxysilane was prepared by a sol-gel method. Characterization tests showed that the coating was homogeneous, relatively polar, and both thermally (< 400 °C) and chemically stable. Coated stir bars were evaluated in the SBSE experiments. Benzene derivatives were successfully extracted/preconcentrated from aqueous solutions and environmental waters. Furanic derivatives and antibiotics were moderately extracted from water, but they were extracted from isooctane.

Downloads

Download data is not yet available.

References

P?otka-Wasylka, J.; Szczepa?ska, N.; de la Guardia, M.; Namie?nik, J. TrAC Trends in Anal. Chem. 2015, 73, 19-38 DOI: https://doi.org/10.1016/j.trac.2015.04.026

Nogueira, J. M. F. TrAC Trends Anal. Chem. 2015, 71, 214–223 DOI: https://doi.org/10.1016/j.trac.2015.05.002

Rykowska, I.; Wasiak, W. Acta Chromatogr. 2013, 25, 27–46 DOI: https://doi.org/10.1556/AChrom.25.2013.1.13

Caruso, R.; Díaz-Parralejo, A.; Miranda, P.; Guiberteau, F. J. Mater. Res. 2001, 16, 2391–2398 DOI: https://doi.org/10.1557/JMR.2001.0328

Attia, S. M. J. Mater. Sci. Technol. 2002, 18, 211–218 DOI: 10.3321/j.issn:1005-0302.2002.03.005

Carbonell, D.; Barranco, V.; Jiménez-Morales, A.; Casal, B.; Galván, J. C. Colloid Polym. Sci. 2011, 289, 1875–1883 DOI: https://doi.org/10.1007/s00396-011-2504-y

Duraibabu, D.; Ganeshbabu, T.; Saravanan, P.; Kumar, S. A.; High Perform. Polym. 2014, 26, 725 – 733 DOI: https://doi.org/10.1177/0954008314528225

Kloskowski, A.; Pilarczyk, M.; Chrzanowski, W.; Namie?nik, J. Crit. Rev. Anal. Chem. 2010, 40, 172–186 DOI: https://doi.org/10.1080/10408347.2010.490486

Gilart, N.; Marcé, R. M.; Borrull, F.; Fontanals, N. TrAC Trends Anal. Chem. 2014, 54, 11–23 DOI: https://doi.org/10.1016/j.trac.2013.10.010

Li, J.; Li, F.; Liu, Q. Chemosphere 2017, 178, 143–153 DOI: https://doi.org/10.1016/j.chemosphere.2017.03.052

Nie, S. P.; Huang, J. G.; Zhang, Y. N.; Hu, J. L.; Wang, S.; Shen, M. Y.; Li, C.; Marcone, M. F.; Xie, M.Y. Food Control, 2013, 30, 62–68 DOI: https://doi.org/10.1016/j.foodcont.2012.07.020

Baran, W.; Adamek, E.; Ziemia?ska, J.; Sobczak, A. J. Hazard. Mater. 2011, 196, 1-15 DOI: https://doi.org/10.1016/j.jhazmat.2011.08.082

Liu, W.; Wang, H.; Guan, Y. J. Chromatogr. A 2004, 1045, 15–22 DOI: https://doi.org/10.1016/j.chroma.2004.06.036

Lan, L.; Hu, B.; Yu, C. J. Chromatogr. A 2010, 1217, 7003–7009 DOI: https://doi.org/10.1016/j.chroma.2010.09.006

Ibrahim, W. A. W.; Keyon, A. S. A.; Prastomo, N.; Matsuda, A. J. Sol-Gel Sci. Technol. 2011, 59, 128–134 DOI: https://doi.org/10.1007/s10971-011-2470-3

Yoldas, B. E. J. Non. Cryst. Solids 1984, 63, 145–154 DOI: https://doi.org/10.1016/0022-3093(84)90393-4

Wen, J.; Wilkes, G. L. Chem. Mater. 1996, 8, 1667–1681 DOI: 10.1021/cm9601143

Katagiri, K.; Hasegawa, K.; Matsuda, A.; Tatsumisago, M.; Minami, T. J. Am. Ceram. Soc. 1998, 81, 2501–2503 DOI: 10.1111/j.1151-2916.1998.tb02653.x

Ma, M.; Zhang, Y.; Yu, W.; Shen, H.; Zhang, H.; Gu, N. Colloids Surfaces A Physicochem. Eng. Asp. 2003, 212, 219–226 DOI: https://doi.org/10.1016/S0927-7757(02)00305-9

Bange, J. P.; Patil, L. S.; Gautam, D. K. Prog. Electromagn. Res. M 2008, 3, 165–175 DOI: 10.2528/PIERM08060401

Rao, A. V.; Kalesh, R. R.; Pajonk, G. M. J. Mater. Sci. 2003, 38, 4407–4413 DOI: https://doi.org/10.1023/A:1026311905523

Park, J. T.; Seo, J. A.; Ahn, S. H.; Kim, J. H.; Kang, S. W. J. Ind. Eng. Chem. 2010, 16, 517–522 DOI: https://doi.org/10.1016/j.jiec.2010.03.030

Liu, L.; Sheardown, H. Biomaterials 2005, 26, 233–244 DOI: https://doi.org/10.1016/j.biomaterials.2004.02.025

Jopp, J.; Grüll, H.; Yerushalmi-Rozen, R. Langmuir 2004, 20, 10015–10019 DOI: 10.1021/la0497651

Yan, X.; Wu, D.; Peng, H.; Ding, K.; Duan, C.; Guan, Y. J Chromatogr A 2012, 69-76 DOI: https://doi.org/10.1016/j.chroma.2012.05.015

Bosworth, T.; Setford, S.; Saini, S.; Heywood, R. Anal. Chim. Acta. 2001, 450, 253–261 DOI: https://doi.org/10.1016/S0003-2670(01)01377-0

Downloads

Published

2018-06-06

Most read articles by the same author(s)