Theoretical Investigation Non-covalent Interactions of N-(diphenylphosphinothioyl)-2-pyrazinecarboxamide

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i2.1936

Keywords:

Phosphine chalcogenide, Non-covalent interaction, NCI analysis, Hirshfeld, QTAIM, NBO

Abstract

Abstract. Phosphine chalcogenides can form reliable and reproducible supramolecular synthons through noncovalent interactions that can be employed for designing high dimensional supramolecular architectures. Here, we systematically study the influence of non-covalent interactions in the fabrication of these synthons and the stability of the crystalline structure of (N2C4H3)C(O)NHP(S)(C6H5)2 (1) through non-covalent interactions (NCI) analysis, molecular Hirshfeld surfaces and the corresponding two-dimensional (2D) fingerprint plots. The theoretical studies were employed to further confirm the presence of these synthons by comparing the stabilization energies of the dimers and monomers. The nature and electronic structure of the phosphor-chalcogenid bond in (N2C4H3)C(O)NHP(E)(OC6H5)2(E = S(1), O(2), and Se (3)) have also been evaluated by QTAIM, NBO, MEP, and HOMO-LUMO energy gaps.

 

Resumen. Los calcogenuros de fosfina pueden formar sintones moleculares confiables y reproducibles por medio de interacciones nocovalentes que se pueden utilizar para diseñar arquitecturas supramoleculares de alta dimensionalidad. En este trabajo estudiamos sistemáticamente la influencia de las interacciones nocovalentes en la preparación de estos sintones y en la estabilidad de la estructura cristalina de N2C4H3)C(O)NHP(S)(C6H5)2 (1), usando el análisis NCI de interacciones nocovalentes, las superficies moleculares de Hirshfeld y sus correspondientes gráficas bidimensionales (2D). Los estudios teóricos se usaron para confirmar la presencia de estos sintones al comparar las energías de estabilización de los dímeros y monómeros. La naturaleza y estructura electrónica del enlace fósforo-calcogenuro en (N2C4H3)C(O)NHP(E)(OC6H5)2(E = S(1), O(2), y Se (3)) también se estudiaron con QTAIM, NBO, MEP y el gap de energía HOMO-LUMO.

Downloads

Download data is not yet available.

Author Biographies

Masoud Rashidi, Lorestan University

Department of Chemistry, Faculty of Science

Niloufar Dorosti, Lorestan University

Department of Chemistry, Faculty of Science

Alireza Gholipour, Lorestan University

Department of Chemistry, Faculty of Science

References

Mirzaei, M.; Eshghi, H.; Akhlaghi Bagherjeri, F.; Mirzaei, M.; Farhadipour, A. J. Mol. Struct. 2018, 1163, 316-326.

Desiraju, G. R. Angew. Chem. Int. Edit. 1995, 34, 2311-2327.

Desiraju, G. R. in: The Design of Organic Solids: Elsevier: Amsterdam, 1989.

Desiraju, G. R. Angew. Chem. Int. Edit. 2007, 46, 8342–8356.

Seth, S. K.; Bauza, A.; Frontera, A. Cryst. Eng. Comm. 2018, 20, 746-754.

Khavasi, H. R.; Gholami, A.; Hosseini, M.; Nikpoor, L.; Eskandari, K. Cryst. Growth. Des. 2020, 20, 2266-2274.

Ray Choudhury, S.; Gamez, P.; Robertazzi, A.; Chen, C.Y.; Lee, H. M.; Mukhopadhyay, S. Cryst. Growth. Des. 2008, 8, 3773-3784.

Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, S. J. Mol. Struct. 2018, 1159, 156-166.

Mitra, M.; Manna, P.; Bauza, A.; Ballester, P.; Seth, S-k.; Choudhury, S. R.; Frontera, A.; Mukhopadhyay, S. J. Phys. Chem. B. 2014, 118, 14713-14726.

Gholivand, K.; Hosseini, M.; Ebrahimi Valmoozi, A. A.; Farshadfar, K. Cryst. Eng. Comm. 2017, 19, 2536-2548.

Khavasi, H. R.; AzhdariTehrani, A. Inorg. Chem. 2013, 52, 2891–2905.

Metrangolo, P.; Resnati, G. in: Halogen bonding, fundamentals and applications, Springer. 2008.

Piltan, M.; Farshadfar, K.; Mark Roe, S. Eur. J. Inorg. Chem. 2017, 2017, 2723-2726.

(a) Khavasi, H. R.; Azizpoor Fard, M. Cryst. Growth. Des. 2010, 10, 1892-1896. (b) Field J. S.; Munro, Q. Q.; Waldron, B. P. Dalton. Trans. 2012, 41, 5486−5496. (c) He, L.; Ma, D.; Duan, L.; Wei, Y.; Qiao, J.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y. Inorg. Chem. 2012, 51, 4502−4510. (d) Derikvand, Z.; Azadbakht, A.; AmiriRudbari, H. J. Inorg. Organomet. Polym. Mater. 2019, 29, 502–516.

(a) Janssen, F. F. B. J.; Gelde, R. G. Rowan, A. E. Cryst. Growth. Des. 2011, 11, 4326−4333. (b) Tiekink, E. R. T.; Zukerman-Schpector, J. Cryst.Eng. Comm. 2009, 11, 1176-1186. (c) Hay, B. P.; Bryantsev, V. S. Chem. Commun. 2008, 2417−2428. (d) Mooibroek, T. J.; Gamez, P.; Reedijk, J. Cryst. Eng. Comm. 2008, 10, 1501−1515. (e) Schottel, B. L.; Chifotides, H. T.; Dunbar, K. R. Chem. Soc. Rev. 2008, 37, 68−83. (f) Orvay, F.; Bauza, A.; Barcelo-Oliver, M.; Raso, A. G.; Fiol, J. J.; Costa, A.; Molins, E.; Mata, E.; Frontera, A. Cryst. Eng. Comm. 2014, 16, 9043-9053.

Popescu, A. P.; Laromaine, A.; Teixidor, F.; Sillanpaa, R.; Kivekas, R.; Liambias, J. I.; Vinas, C. Chem. Eur. J. 2011, 17, 4429 - 4443.

Davies, R. in: Chalcogen-phosphorus (and heavier congeners) chemistry, Chapter 5 of handbook of chalcogen chemistry, RSC Publishing, 2007.

(a) Cook, J. B.; Nicholson, B. K.; Smith, D. W. J. Organomet. Chem. 2004, 689, 860-869 (b) Chutia, P.; Kumari, N.; Sharma, M.; Woollins, J. D.; Slawin, A. M. Z.; Dutta, D. K. Polyhedron. 2004, 23, 1657-1661.

Glueck, D. S. Chem. Eur. J. 2008, 14, 7108 - 7117.

(a) Koh, W. K.; Yoon,Y.; Murray, C. B. Chem. Mater. 2011, 23, 1825-1829. (b) Evans, C. M.; Evans, M. E.; Krauss, T.D. J. Am. Chem. Soc. 2010, 132, 10973-10975. (c) Liu, H.; Owen, J. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2007, 129, 305-312. (d) Arachchige, I. U.; Brock, S. L. Acc. Chem. Res. 2007, 40, 801 - 809.

(a) Gholivand, K.; Madani Alizadehgan, A.; Mojahed, F.; Soleimani, P. Polyhedron. 2008, 27, 1639-1649 (b) Gholivand, K.; Shariatinia, Z.; Mashhadi, S. M.; Daeepour, F.; Farshidnasab, N.; Mahzouni, H.R.; Taheri, N.; Amiri, S.; Ansar, S. Polyhedron. 2009, 28, 307–321. (c) Shi, M.; Shi, J. W. Tetrahedron: Asymmetry. 2007, 18, 645–650.

Gholivand, K.; Gholami, A.; Ebrahimi, A. A. V.; Abolghasemi, S. T.; Esrafili, M. D.; Fadaei, F. T.; Schenk, K. J. Rsc. Adv. 2015, 5, 17482-17492.

Gholivand, K.; Farshadian, S.; Hosseini, Z.; Khajeh, K.; Akbari, N. Appl. Organomet. Chem. 2010, 24, 700–707.

(a) Eini Roumiani, M.; Dorosti,N. Ultrason. Sonochem. 2019, 55, 207-216. (b) Nikpour, S.; Dorosti, N.; Afshar, F.; Kubicki, M. Appl. Organomet. Chem. 2020, e5724. (c) Gholivand, K.; Hosseini, Z.; Farshadian, S.; Naderi Manesh, H. Eur. J. Med. Chem. 2010, 45, 5130-5139.

Manna, P.; Ray Choudhury, S.; Mitraa, M.; Seth, S.K.; Helliwell, M.; Bauza, A.; Frontera, A.; Mukhopadhyay, S. A. J. Solid. State. Chem. 2014, 220, 149-156. (b) Mirzaei, M.; Eshtiagh-Hosseini, H.; Karrabi, Z.; Notash, B.; Bauza, A.; Frontera, A.; Habibi, M.; Ardalani, M.; Shamsipur, M.; J. Mol. Stru. 2015, 1079, 78-86.

(a) Gholivand, K.; Hosseini, M.; Maghsoud, Y.; Valenta, J.; Ebrahimi Valmuzi, A.A.; Owczarzak, A.; Kubicki, M.; Jamshidi, M.; Kahnouji, M. Inorg. Chem. 2019, 58, 9, 5630–5645. (b) Gholivand, K.; Farshadfar, K.; Roe, S.M.; Hosseini, M.; Gholami, A. Cryst. Eng. Comm.2016, 18, 7104-7115.

Dorosti, N.; Nikpour, S.; Molaei, F.; Kubicki, M. Chem. Pap. 2021, 75, 2503-2516.

Gholivand, K.; Dorosti, N. Monatsh. Chem. 2013, 144, 1417-1425.

Alvarado, S. R.; Shortt, I. A.; Fan, H. I.; Vela, J. Organometallics. 2015, 34, 4023-4031.

Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57.

Boys, S. F.; Bernardi, F. Mol. Phys.1970, 19, 553–566.

Bader, R. F. W. Chem. Rev.1991, 91, 893-928.

Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev.1988, 88, 899–926.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, M. A.; Robb, J. R.; Cheeseman, G.;et al. Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford, 2009.

Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498–6506.

Lu, T.; Chen, F. J. Theor. Comput. Chem. 2012, 11, 163-183.

Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics.1996, 14, 33–38.

Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A. Crystalexplorer 3.0, University of Western Australia, Perth, Australia, 2012.

Spackman, M. A.; McKinnon, J. J. Cryst. Eng. Comm. 2002, 4, 378–392.

Nishio, M. Cryst. Eng. Comm. 2004, 6, 130–158.

Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873–13900.

(a) Umezawa, Y.; Tsuboyama, S.; Takahashi, H.; Uzawa, J.; Nishio, M. Tetrahedron. 1999, 5, 10047–10056. (b) Mirdya, S.; Roy, S.; Chatterjee, S.; Bauza, A.; Frontera, A.; Chattopadhyay, S. Cryst. Growth. Des. 2019, 19, 5869-5881.

Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145-4185.

(a) Gabriele, S.; Gatti, C.; Lo Presti, L.; Garcia, J. C. Chem. Eur. J. 2012, 18, 15523–15536. (b) Lande, D. N.; Bhadane, S. A.; Gejji, S. P. J. Phys. Chem. 2017, 121, 1814–1824.

Spackman, M. A.; Byrom, P. G. Chem. Phys. Lett. 1997, 267, 215–220.

Gholivand, K.; Azadbakht, M.; Maghsoud, Y.; Hosseini, M. J. Organomet. Chem. 2019, 879, 27-39.

Taghizadeh, L.; Montazerozohori, M.; Masoudiasl, A.; Joohari, S.; White, J. M. Mater. Sci. Eng. C. 2017, 77, 229–244. (b) Bejaoui, C.; Ameur, I.; Derbel, N.; Linden, A.; Abid, S. J. Mol. Struct. 2018, 1166, 7-14. (c) Binzet, G.; Gumus, I.; Dogen, A.; Florke, U.; Kulku, N.; Arslan, H. J. Mol. Struct. 2018, 1161, 519-529.

Politzer, P.; Murray, J. S. Theor. Chem. Acc. 2002, 108, 134–142

(a) Gholivand, K.; Mahzouni, H. R.; Pourayoubi, M.; Amiri, S. Inorg. Chim. Acta. 2010, 363, 2318–2324. (b) Gholivand, K.; Oroujzadeh, N.; Afshar, F. J. Organomet. Chem. 2010, 695, 1383–1391. (c) Torabi Farkhani, E.; Pourayoubi, M.; Izadyar, M.; Andreev, P. V.; Shchegravina, E. S. Dalton. Trans. 2019, 48, 17908-17918. (d) Taherzadeh, M.; Pourayoubi,M.; Nečas, M. Phosphorus. Sulfur. 2019, 194, 39-46.

Bader, R. F. W. Oxford University Press, New York, 1990.

Dobado, J. A.; Martínez-García, H.; Molina, J.M.; Sundberg, M. R. J. Am. Chem. Soc.1998, 120, 33, 8461-8471.

Jamroz, M. H. in: Vibrational energy distribution analysis, VEDA 4 computer program, Poland, 2004.

Zhou, Z.; Navangul, H. V. J. Phys. Org. Chem. 1990, 3, 784-788.

Senet, P. Chem. Phys. Lett. 1997, 275, 527-532.

Sarıoz, O.; Oznergiz, S.; Kandemirli, F. Syn. React. Inorg. Met. Org. Chem. 2013, 43, 185–195.

Downloads

Additional Files

Published

2024-02-09