Structure-Property/Activity Correlations of Coordination Compounds, Supramolecular Molecular Assemblies and Materials, with Possible Industrial and Biological Applications

Authors

  • Hiram Isaac Beltrán UAM Azcapotzalco https://orcid.org/0000-0002-1097-455X
  • Luis Ángel Alfonso-Herrera UAM Azcapotzalco
  • María Fernanda Serrato-Trejo UAM Azcapotzalco

DOI:

https://doi.org/10.29356/jmcs.v69i1.2317

Keywords:

Coordination compounds, coordination polymers, metal-organic frameworks (MOFs), structural characterization, structure-property relationships

Abstract

This work gives an overview of the scientific contributions developed in the research group of prof. Dr. Hiram Isaac Beltrán during the last 22 years of his career, mainly at Universidad Autónoma Metropolitana, first in Unidad Cuajimalpa and later in Unidad Azcapotzalco. During this period, research was carried out on the development of,  (i) organic ligands to obtain boron-coordination compounds, (ii) diorganotin(IV) coordination compounds directly obtained by the template effect, (iii) applications and lines of research derived from the developed coordination compounds of boron and tin, (iv) coordination polymers and metal-organic frameworks (MOFs), (v) infiltrated coordination polymers and MOFs, (vi) band gap modulation and luminescence properties of coordination polymers and MOFs, (vii) biological properties of coordination polymers and MOFs, (viii) macrocyclic systems and their applications, and (ix) supramolecular assemblies and their applications. Conducting of more than 90 research papers and about 20 patents during this period. All this research involved the design and development of a specific molecular or material system with precise physicochemical properties to achieve a goal, fulfill a function or even be (multi)functional for biologic, scientific or industrial purposes. To follow all these research directions, some concepts will be highlighted in the overview and later the compendium will be presented. Acquiring this knowledge and experience has allowed us to design and develop molecular and material systems to achieve specific functions and applications. This has also helped other research groups to understand their own systems under investigation and has furthered the field of applied chemistry at a multifunctional level.

 

Resumen. Este trabajo ofrece una visión general de las contribuciones científicas desarrolladas en el grupo de investigación del prof. Dr. Hiram Isaac Beltrán durante los últimos 22 años de su carrera, principalmente en la Universidad Autónoma Metropolitana, primero en la Unidad Cuajimalpa y luego en la Unidad Azcapotzalco. Durante este periodo, se ha investigado el desarrollo de (i) ligandos orgánicos para la obtención de compuestos de coordinación con boro, (ii) compuestos de coordinación de diorganoestaño(IV) obtenidos directamente por efecto templado, (iii) aplicaciones y líneas de investigación derivadas de los compuestos de coordinación de boro y estaño desarrollados, (iv) polímeros de coordinación y redes metal-orgánicas (MOF), (v) infiltración de polímeros de coordinación y MOFs, (vi) modulación de banda prohibida y propiedades de luminiscencia de polímeros de coordinación y MOFs, (vii ) propiedades biológicas de polímeros de coordinación y MOFs, (viii) sistemas macrocíclicos y sus aplicaciones, y (ix) ensambles supramoleculares y sus aplicaciones.. Realizando más de 90 artículos de investigación y alrededor de 20 patentes durante este periodo. Toda esta investigación involucra el diseño y desarrollo de un sistema molecular o material particular con propiedades fisicoquímicas precisas para lograr un objetivo, para eventualmente cumplir una función o incluso ser (multi)funcional para fines biológicos, científicos o industriales. Para seguir todas estas líneas de investigación, se destacaron algunos conceptos y posteriormente se presentó el compendio. La adquisición de este conocimiento y experiencia ha permitido diseñar y desarrollar sistemas moleculares y materiales para lograr funciones y aplicaciones específicas. Esto también ha ayudado a otros grupos de investigación a comprender sus propios sistemas de estudio y ha impulsado el campo de investigación de la química aplicada a un nivel multifuncional.

Downloads

Download data is not yet available.

Author Biographies

Hiram Isaac Beltrán , UAM Azcapotzalco

Área de Química de Materiales, Departamento de Ciencias Básicas, DCBI

Luis Ángel Alfonso-Herrera, UAM Azcapotzalco

Área de Química de Materiales, Departamento de Ciencias Básicas, DCBI

María Fernanda Serrato-Trejo, UAM Azcapotzalco

Área de Química de Materiales, Departamento de Ciencias Básicas, DCBI

References

Wadhwa, P.; Mittal, A. Quantitative Structure-Property Relationship (QSPR) Modeling Applications in Formulation Development. In Computer Aided Pharmaceutics and Drug Delivery: An Application Guide for Students and Researchers of Pharmaceutical Sciences, Saharan, V. A. Ed.; Springer Nature Singapore, 2022; pp 543-560. DOI: https://doi.org/10.1007/978-981-16-5180-9_17

Grover, M.; Singh, B.; Bakshi, M.; Singh, S. Quantitative structure–property relationships in pharmaceutical research – Part 1. Pharmaceutical Science & Technology Today 2000, 3 (1), 28-35. DOI: https://doi.org/10.1016/S1461-5347(99)00214-X. DOI: https://doi.org/10.1016/S1461-5347(99)00214-X

Le, T.; Epa, V. C.; Burden, F. R.; Winkler, D. A. Chem. Rev. 2012, 112, 2889-2919. DOI: http://dx.doi.org/10.1021/cr200066h. DOI: https://doi.org/10.1021/cr200066h

Sizochenko, N.; Leszczynski, J. J. Nanotox. Nanomed. 2016, 1, 1-16. DOI: http://dx.doi.org/10.4018/JNN.2016010101. DOI: https://doi.org/10.4018/JNN.2016010101

Li, Y. K.; Ma, X. Y. Adv. Mater. Res. 2013, 740, 306-309. DOI: https://dx.doi.org/10.4028/www.scientific.net/AMR.740.306. DOI: https://doi.org/10.4028/www.scientific.net/AMR.740.306

Trolier-McKinstry, S.; Newnham, R. E. Materials Engineering: Bonding, Structure, and Structure-Property Relationships; Cambridge University Press, 2017. DOI: http://dx.doi.org/10.1017/9781316217818. DOI: https://doi.org/10.1017/9781316217818

X-Ray Diffraction Methods. In Materials Characterization, 2013; pp 47-82. DOI: https://doi.org/10.1002/9783527670772.ch2

Scanning Electron Microscopy. In Materials Characterization, 2013; pp 127-161. DOI: https://doi.org/10.1002/9783527670772.ch4

X-Ray Spectroscopy for Elemental Analysis. In Materials Characterization, 2013; pp 191-219. DOI: https://doi.org/10.1002/9783527670772.ch6

Vibrational Spectroscopy for Molecular Analysis. In Materials Characterization, 2013; pp 283-332. DOI: https://doi.org/10.1002/9783527670772.ch9

Thermal Analysis. In Materials Characterization, 2013; pp 333-365. DOI: https://doi.org/10.1002/9783527670772.ch10

Silverstein, R. M.; Webster, F. X.; Kiemle, D. J.; Bryce, D. L. Spectrometric identification of organic compounds / Robert M. Silverstein, Francis X. Webster, David J. Kiemle, State University of New York, College of Environmental Science & Forestry; David L. Bryce, University of Ottawa; John Wiley and Sons, Inc., 2015.

Bhatt, V. Chapter 1 - Basic Coordination Chemistry. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 1-35. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00001-X

Bhatt, V. Chapter 4 - Thermodynamics and Kinetics of Complex Formation. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 111-137. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00004-5

Bhatt, V. Chapter 7 - Basic Organometallic Chemistry. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 173-190. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00007-0

Bhatt, V. Chapter 2 - Basic Concepts of Symmetry and Group Theory. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 37-62. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00002-1

Bhatt, V. Chapter 5 - Reactions in Octahedral Complexes. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 139-159. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00005-7

Bhatt, V. Chapter 3 - Isomerism in Coordination Complexes. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 63-109. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00003-3

Weber, B. What Are Complexes? In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 1-11. DOI: https://doi.org/10.1007/978-3-662-66441-4_1

Weber, B. Structure and Nomenclature. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 13-34. DOI: https://doi.org/10.1007/978-3-662-66441-4_2

Weber, B. Stability of Coordination Compounds. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 87-105. DOI: https://doi.org/10.1007/978-3-662-66441-4_6

Weber, B. Supramolecular Coordination Chemistry. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 121-138. DOI: https://doi.org/10.1007/978-3-662-66441-4_8

Weber, B. Bioinorganic Chemistry. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 215-237. DOI: https://doi.org/10.1007/978-3-662-66441-4_12

Weber, B. Catalysis. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 239-261. DOI: https://doi.org/10.1007/978-3-662-66441-4_13

Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design, Analysis and Application; The Royal Society of Chemistry, 2008. DOI: http://dx.doi.org/10.1039/9781847558862. DOI: https://doi.org/10.1039/9781847558862

Guo, X.; Geng, S.; Zhuo, M.; Chen, Y.; Zaworotko, M. J.; Cheng, P.; Zhang, Z. Coord. Chem. Rev. 2019, 391, 44-68. DOI: https://doi.org/10.1016/j.ccr.2019.04.003. DOI: https://doi.org/10.1016/j.ccr.2019.04.003

Saalfrank, R. W.; Maid, H.; Scheurer, A. Angew. Chem. Int. Ed. 2008, 47, 8794-8824. DOI: https://doi.org/10.1002/anie.200702075 (acccessed 2024/08/14). DOI: https://doi.org/10.1002/anie.200702075

Hong, M.-C.; Chen, L. Design and construction of coordination polymers; Wiley, 2009. DOI: http://dx.doi.org/10.1002/9780470467336. DOI: https://doi.org/10.1002/9780470467336

Lehn, J.-M. Proc. Natl. Acad. Sci. 2002, 99, 4763-4768. DOI: http://dx.doi.org/10.1073/pnas.072065599 (acccessed 2024/08/14). DOI: https://doi.org/10.1073/pnas.072065599

Beltran, H. I.; Zamudio-Rivera, L. S.; Mancilla, T.; Santillan, R.; Farfan, N. Chem. Eur. J. 2003, 9, 2291-2306. DOI: http://dx.doi.org/10.1002/chem.200204260. DOI: https://doi.org/10.1002/chem.200204260

Farfan, N.; Mancilla, T.; Santillan, R.; Gutierrez, A.; Zamudio-Rivera, L. S.; Beltran, H. I. J. Organomet. Chem. 2004, 689, 3481-3491. DOI: http://dx.doi.org/10.1016/j.jorganchem.2004.07.053. DOI: https://doi.org/10.1016/j.jorganchem.2004.07.053

Zamudio-Rivera, L. S.; George-Tellez, R.; Lopez-Mendoza, G.; Morales-Pacheco, A.; Flores, E.; Hopfl, H.; Barba, V.; Fernandez, F. J.; Cabirol, N.; Beltran, H. I. Inorg. Chem. 2005, 44, 5370-5378. DOI: http://dx.doi.org/10.1021/ic048628o. DOI: https://doi.org/10.1021/ic048628o

Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem. Int. Ed. 2004, 43, 2334-2375. DOI: https://doi.org/10.1002/anie.200300610 (acccessed 2024/06/07). DOI: https://doi.org/10.1002/anie.200300610

Bünzli, J.-C. G. J. Coord. Chem. 2014, 67, 3706-3733. DOI: http://dx.doi.org/10.1080/00958972.2014.957201. DOI: https://doi.org/10.1080/00958972.2014.957201

Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. Cryst. Eng. Comm. 2012, 14, 3001-3004, 10.1039/C2CE06488J. DOI: https://dx.doi.org/10.1039/C2CE06488J. DOI: https://doi.org/10.1039/c2ce06488j

Beltran, H. I.; Abreu, A.; Zamudio-Rivera, L. S.; Mancilla, T.; Santillan, R.; Farfan, N. Rev. Soc. Quim. Mex. 2001, 45, 152-158.

Beltran, H. I.; Alas, S. J.; Santillan, R.; Farfan, N. Can. J. Chem. 2002, 80, 801-812. DOI: https://dx.doi.org/10.1139/v02-109. DOI: https://doi.org/10.1139/v02-109

Abreu, A.; Alas, S. J.; Beltran, H. I.; Santillan, R.; Farfan, N. J. Organomet. Chem. 2006, 691, 337-348. DOI: https://dx.doi.org/10.1016/j.jorganchem.2005.08.042. DOI: https://doi.org/10.1016/j.jorganchem.2006.03.040

Beltran, H. I.; Zamudio-Rivera, L. S.; Mancilla, T.; Santillan, R.; Farfan, N. J. Organomet. Chem. 2002, 657, 194-204. DOI: https://doi.org/10.1016/S0022-328X(02)01418-3. DOI: https://doi.org/10.1016/S0022-328X(02)01418-3

Mancilla, T.; Zamudio-Rivera, L. S.; Hiram; Beltrán, I.; Santillan, R.; Farfán, N. ARKIVOC 2005, 2005 (6), 366-376. DOI: http://dx.doi.org/10.3998/ark.5550190.0006.632. DOI: https://doi.org/10.3998/ark.5550190.0006.632

Gielen, M.; Davies, A. G.; Pannell, K.; Tiekink, E. Tin Chemistry: Fundamentals, Frontiers, and Applications; Wiley, 2008. DOI: http://dx.doi.org/10.1002/9780470758090. DOI: https://doi.org/10.1002/9780470758090

Muñoz-Flores, B. M.; Santillán, R.; Farfán, N.; Álvarez-Venicio, V.; Jiménez-Pérez, V. M.; Rodríguez, M.; Morales-Saavedra, O. G.; Lacroix, P. G.; Lepetit, C.; Nakatani, K. J. Organomet. Chem. 2014, 769, 64-71. DOI: http://dx.doi.org/10.1016/j.jorganchem.2014.07.002. DOI: https://doi.org/10.1016/j.jorganchem.2014.07.002

Beltran, H. I.; Santillan, R.; Farfan, N. Biological aspects of organotins: perspectives in structural and molecular biology. In Tin Chemistry, 2008; pp 482-496.

Beltran, H. I.; Damian-Zea, C.; Hernandez-Ortega, S.; Nieto-Camacho, A.; Ramirez-Apan, M. T. J. Inorg. Biochem. 2007, 101, 1070-1085. DOI: https://dx.doi.org/10.1016/j.jinorgbio.2007.04.002. DOI: https://doi.org/10.1016/j.jinorgbio.2007.04.002

Zugazagoitia, J. S.; Maya, M.; Damián-Zea, C.; Navarro, P.; Beltrán, H. I.; Peon, J. Excited-State J. Phys. Chem. A 2010, 114 (2), 704-714. DOI: http://dx.doi.org/10.1021/jp904784b. DOI: https://doi.org/10.1021/jp904784b

Hernández-Altamirano, R.; Mena-Cervantes, V. Y.; Chávez-Miyauchi, T. E.; Nieto-Álvarez, D. A.; Domínguez-Aguilar, M. A.; Zamudio-Rivera, L. S.; Barba, V.; Fernández-Perrino, F. J.; Pérez-Miranda, S.; Beltrán, H. I. Polyhedron 2013, 52, 301-307. DOI: http://dx.doi.org/10.1016/j.poly.2012.09.022. DOI: https://doi.org/10.1016/j.poly.2012.09.022

González-Rivas, N.; Cuevas-Yañez, E.; Barba, V.; Beltran, H. I.; Reyes, H. Inorg. Chem. Commun. 2013, 37, 110-113. DOI: http://dx.doi.org/10.1016/j.inoche.2013.09.035. DOI: https://doi.org/10.1016/j.inoche.2013.09.035

Barba, V.; Vega, E.; Luna, R.; Höpfl, H.; Beltrán, H. I.; Zamudio-Rivera, L. S. J. Organomet. Chem. 2007, 692 (4), 731-739. DOI: https://doi.org/10.1016/j.jorganchem.2006.09.064. DOI: https://doi.org/10.1016/j.jorganchem.2006.09.064

Braun, M. Eur. J. Org. Chem. 2024, 27 (14). DOI: http://dx.doi.org/10.1002/ejoc.202400052. DOI: https://doi.org/10.1002/ejoc.202400052

Abdou-Mohamed, A.; Aupic, C.; Fournet, C.; Parrain, J. L.; Chouraqui, G.; Chuzel, O. Chem. Soc. Rev. 2023, 52, 4381-4391. DOI: https://dx.doi.org/10.1039/d3cs00163f. DOI: https://doi.org/10.1039/D3CS00163F

Schlecht, S.; Frank, W.; Braun, M. Beilstein J. Org. Chem. 2011, 7, 615-621. DOI: http://dx.doi.org/10.3762/bjoc.7.72. DOI: https://doi.org/10.3762/bjoc.7.72

Zhang, G.; Zhang, Z.; Hou, M.; Cai, X.; Yang, K.; Yu, P.; Song, Q. Nat. Commun. 2022, 13 (1), 2624. DOI: http://dx.doi.org/10.1038/s41467-022-30287-7. DOI: https://doi.org/10.1038/s41467-022-30287-7

Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129 (21), 6716-6717. DOI: http://dx.doi.org/10.1021/ja0716204. DOI: https://doi.org/10.1021/ja0716204

Rivera, J. M.; Reyes, H.; Cortés, A.; Santillan, R.; Lacroix, P. G.; Lepetit, C.; Nakatani, K.; Farfán, N. Chem. Mater. 2006, 18 (5), 1174-1183. DOI: http://dx.doi.org/10.1021/cm051589+. DOI: https://doi.org/10.1021/cm051589+

Lopez-Espejel, M.; Gomez-Trevino, A.; Munoz-Flores, B. M.; Treto-Suarez, M. A.; Schott, E.; Paez-Hernandez, D.; Zarate, X.; Jimenez-Perez, V. M. J. Mater. Chem. B 2021, 9 (37), 7698-7712. DOI: http://dx.doi.org/10.1039/d1tb01405f. DOI: https://doi.org/10.1039/D1TB01405F

Berrones‐Reyes, J. C.; Muñoz‐Flores, B. M.; Uscanga‐Palomeque, A. C.; Santillán, R.; Del Angel‐Mosqueda, C.; Nobis, D.; Cochrane, M. A.; Magennis, S. W.; Jiménez‐Pérez, V. M. ChemistrySelect 2020, 5 (5), 1623-1627. DOI: http://dx.doi.org/10.1002/slct.201904816. DOI: https://doi.org/10.1002/slct.201904816

García-López, M. C.; Muñoz-Flores, B. M.; Jiménez-Pérez, V. M.; Moggio, I.; Arias, E.; Chan-Navarro, R.; Santillan, R. Dyes and Pigments 2014, 106, 188-196. DOI: http://dx.doi.org/10.1016/j.dyepig.2014.02.021. DOI: https://doi.org/10.1016/j.dyepig.2014.02.021

Yousefi, M.; Sedaghat, T.; Simpson, J.; Shafiei, M. Appl. Organomet. Chem. 2019, 33 (11), e5137. DOI: https://doi.org/10.1002/aoc.5137. DOI: https://doi.org/10.1002/aoc.5137

Hernandez-Ahuactzi, I. F.; Hopfl, H.; Barba, V.; Roman-Bravo, P.; Zamudio-Rivera, L. S.; Beltran, H. I. Eur. J. Inorg. Chem. 2008, 17, 2746-2755. DOI: http://dx.doi.org/10.1002/ejic.200800222. DOI: https://doi.org/10.1002/ejic.200800222

Loera-Serna, S.; Oliver-Tolentino, M. A.; de Lourdes López-Núñez, M.; Santana-Cruz, A.; Guzmán-Vargas, A.; Cabrera-Sierra, R.; Beltrán, H. I.; Flores, J. J. Alloys Compd. 2012, 540, 113-120. DOI: http://dx.doi.org/10.1016/j.jallcom.2012.06.030. DOI: https://doi.org/10.1016/j.jallcom.2012.06.030

Loera-Serna, S.; Núñez, L. L.; Flores, J.; López-Simeon, R.; Beltrán, H. I. RSC Adv. 2013, 3 (27), 10962. DOI: http://dx.doi.org/10.1039/c3ra40726h. DOI: https://doi.org/10.1039/c3ra40726h

González Chávez, F.; Nájera, H.; Leyva, M. A.; Solorza-Feria, O.; González, F.; Beltrán, H. I. Cryst. Growth Des. 2020, 20 (7), 4273-4292. DOI: http://dx.doi.org/10.1021/acs.cgd.9b01542. DOI: https://doi.org/10.1021/acs.cgd.9b01542

González Chávez, F.; Beltrán, H. I. New J. Chem. 2021, 45 (15), 6600-6610. DOI: http://dx.doi.org/10.1039/d0nj04055j. DOI: https://doi.org/10.1039/D0NJ04055J

Loera-Serna, S.; Ortiz, E.; Beltrán, H. I. New J. Chem. 2017, 41 (8), 3097-3105. DOI: http://dx.doi.org/10.1039/c6nj03912j. DOI: https://doi.org/10.1039/C6NJ03912J

Loera-Serna, S.; Flores, J.; Navarrete-Lopez, A. M.; Diaz de Leon, J. N.; Beltran, H. I. Chem. Eur. J. 2019, 25 (17), 4398-4411. DOI: http://dx.doi.org/10.1002/chem.201805548. DOI: https://doi.org/10.1002/chem.201805548

Cortes-Suarez, J.; Celis-Arias, V.; Beltran, H. I.; Tejeda-Cruz, A.; Ibarra, I. A.; Romero-Ibarra, J. E.; Sanchez-Gonzalez, E.; Loera-Serna, S. ACS Omega 2019, 4 (3), 5275-5282. DOI: http://dx.doi.org/10.1021/acsomega.9b00330. DOI: https://doi.org/10.1021/acsomega.9b00330

Alfonso Herrera, L. Á.; Beltrán, H. I. Coord. Chem. Rev. 2024, 505. DOI: https://dx.doi.org/10.1016/j.ccr.2024.215658. DOI: https://doi.org/10.1016/j.ccr.2024.215658

Alfonso-Herrera, L. A.; Rodriguez-Giron, J. S.; de Sampedro, H. I. G.; Sanchez-Martinez, D.; Navarrete-Lopez, A. M.; Beltran, H. I. Chempluschem 2024, 89 (5), e202300579. DOI: https://dx.doi.org/10.1002/cplu.202300579. DOI: https://doi.org/10.1002/cplu.202300579

Celis-Arias, V.; Garduno-Wilchis, I. A.; Alarcon, G.; Gonzalez Chavez, F.; Garrido Guerrero, E.; Beltran, H. I.; Loera-Serna, S. Front. Chem. 2022, 10, 1065622. DOI: http://dx.doi.org/10.3389/fchem.2022.1065622. DOI: https://doi.org/10.3389/fchem.2022.1065622

Lopez-Ruiz, L. E.; Salas-Juárez, C. J.; Garduño-Wilches, I.; Beltran, H. I.; Orozco-Valencia, U.; López-Esquivel, R. I.; Guzman-Olguin, J. C.; Centeno-Alvarez, M.; Guzman-Mendoza, J. J. Lumin. 2023, 263. DOI: http://dx.doi.org/10.1016/j.jlumin.2023.120020. DOI: https://doi.org/10.1016/j.jlumin.2023.120020

Celis-Arias, V.; Loera-Serna, S.; Beltran, H. I.; Alvarez-Zeferino, J. C.; Garrido, E.; Ruiz-Ramos, R. New J. Chem. 2018, 10.1039/C8NJ00120K. DOI: http://dx.doi.org/10.1039/C8NJ00120K. DOI: https://doi.org/10.1039/C8NJ00120K

Arenas-Vivo, A.; Celis Arias, V.; Amariei, G.; Rosal, R.; Izquierdo-Barba, I.; Hidalgo, T.; Vallet-Regi, M.; Beltran, H. I.; Loera-Serna, S.; Horcajada, P. Pharmaceutics 2023, 15 (1). DOI: https://dx.doi.org/10.3390/pharmaceutics15010301. DOI: https://doi.org/10.3390/pharmaceutics15010301

Loera-Serna, S.; Beltran, H. I.; Mendoza-Sanchez, M.; Alvarez-Zeferino, J. C.; Almanza, F.; Fernandez-Luqueno, F. Environ. Sci. Pollut. Res. 2024, 31 (9), 13270-13283. DOI: http://dx.doi.org/10.1007/s11356-023-31728-6. DOI: https://doi.org/10.1007/s11356-023-31728-6

Marrufo-Hernandez, N. A.; Najera, H.; Gonzalez Chavez, F.; Beltran, H. I. Food Chem. 2024, 439, 138178. DOI: http://dx.doi.org/10.1016/j.foodchem.2023.138178. DOI: https://doi.org/10.1016/j.foodchem.2023.138178

Sosa-Sanchez, J. L.; Sosa-Sanchez, A.; Farfan, N.; Zamudio-Rivera, L. S.; Lopez-Mendoza, G.; Flores, J. P.; Beltran, H. I. Chem. Eur. J. 2005, 11 (14), 4263-4273. DOI: http://dx.doi.org/10.1002/chem.200500003. DOI: https://doi.org/10.1002/chem.200500003

Beltran, H. I.; Esquivel, R.; Lozada-Cassou, M.; Dominguez-Aguilar, M. A.; Sosa-Sanchez, A.; Sosa-Sanchez, J. L.; Hopfl, H.; Barba, V.; Luna-Garcia, R.; Farfan, N.; et al. Chem. Eur. J. 2005, 11 (9), 2705-2715. DOI: https://dx.doi.org/10.1002/chem.200400955. DOI: https://doi.org/10.1002/chem.200400955

Beltran, H. I.; Esquivel, R.; Sosa-Sanchez, A.; Sosa-Sanchez, J. L.; Hopfl, H.; Barba, V.; Farfan, N.; Garcia, M. G.; Olivares-Xometl, O.; Zamudio-Rivera, L. S. Inorg. Chem. 2004, 43 (12), 3555-3557. DOI: https://dx.doi.org/10.1021/ic049634n. DOI: https://doi.org/10.1021/ic049634n

Gutierrez-Meza, E.; Noria, R.; Granados, G.; Gomez-Vidales, V.; Ramirez, J. Z.; Beltran, H. I.; Peon, J. J. Phys. Chem. B 2012, 116 (48), 14107-14114. DOI: http://dx.doi.org/10.1021/jp3078453. DOI: https://doi.org/10.1021/jp3078453

Mena-Cervantes, V. Y.; Hernández-Altamirano, R.; Buenrostro-González, E.; Beltrán, H. I.; Zamudio-Rivera, L. S. Energy & Fuels 2010, 25 (1), 224-231. DOI: http://dx.doi.org/10.1021/ef101023r. DOI: https://doi.org/10.1021/ef101023r

Mena-Cervantes, V. Y.; Hernández-Altamirano, R.; Buenrostro-González, E.; Beltrán, H. I.; Zamudio-Rivera, L. S. Fuel 2013, 110, 293-301. DOI: http://dx.doi.org/10.1016/j.fuel.2012.12.071. DOI: https://doi.org/10.1016/j.fuel.2012.12.071

Cerón-Camacho, R.; Cisneros-Dévora, R.; Soto-Castruita, E.; Pons-Jiménez, M.; Beltrán, H. I.; Martínez-Magadán, J.-M.; Zamudio-Rivera, L. S. Arab. J. Chem. 2016. DOI: http://dx.doi.org/10.1016/j.arabjc.2016.08.008. DOI: https://doi.org/10.1016/j.arabjc.2016.08.008

Pons-Jiménez, M.; Cartas-Rosado, R.; Martínez-Magadán, J. M.; Oviedo-Roa, R.; Cisneros-Dévora, R.; Beltrán, H. I.; Zamudio-Rivera, L. S. Colloids Surf. Physicochem. Eng. Aspects 2014, 455, 76-91. DOI: http://dx.doi.org/10.1016/j.colsurfa.2014.04.051. DOI: https://doi.org/10.1016/j.colsurfa.2014.04.051

Soto‐Castruita, E.; Cisneros‐Dévora, R.; Cerón‐Camacho, R.; Ramírez‐Pérez, J. F.; Servín‐Nájera, A. G.; Oviedo‐Roa, R.; Martínez‐Magadán, J. M.; Beltrán, H. I.; Zamudio‐Rivera, L. S. ChemistrySelect 2023, 8 (36). DOI: http://dx.doi.org/10.1002/slct.202301790. DOI: https://doi.org/10.1002/slct.202301790

Downloads

Published

2025-01-01