Structure-Property/Activity Correlations of Coordination Compounds, Supramolecular Molecular Assemblies and Materials, with Possible Industrial and Biological Applications
DOI:
https://doi.org/10.29356/jmcs.v69i1.2317Keywords:
Coordination compounds, coordination polymers, metal-organic frameworks (MOFs), structural characterization, structure-property relationshipsAbstract
This work gives an overview of the scientific contributions developed in the research group of prof. Dr. Hiram Isaac Beltrán during the last 22 years of his career, mainly at Universidad Autónoma Metropolitana, first in Unidad Cuajimalpa and later in Unidad Azcapotzalco. During this period, research was carried out on the development of, (i) organic ligands to obtain boron-coordination compounds, (ii) diorganotin(IV) coordination compounds directly obtained by the template effect, (iii) applications and lines of research derived from the developed coordination compounds of boron and tin, (iv) coordination polymers and metal-organic frameworks (MOFs), (v) infiltrated coordination polymers and MOFs, (vi) band gap modulation and luminescence properties of coordination polymers and MOFs, (vii) biological properties of coordination polymers and MOFs, (viii) macrocyclic systems and their applications, and (ix) supramolecular assemblies and their applications. Conducting of more than 90 research papers and about 20 patents during this period. All this research involved the design and development of a specific molecular or material system with precise physicochemical properties to achieve a goal, fulfill a function or even be (multi)functional for biologic, scientific or industrial purposes. To follow all these research directions, some concepts will be highlighted in the overview and later the compendium will be presented. Acquiring this knowledge and experience has allowed us to design and develop molecular and material systems to achieve specific functions and applications. This has also helped other research groups to understand their own systems under investigation and has furthered the field of applied chemistry at a multifunctional level.
Resumen. Este trabajo ofrece una visión general de las contribuciones científicas desarrolladas en el grupo de investigación del prof. Dr. Hiram Isaac Beltrán durante los últimos 22 años de su carrera, principalmente en la Universidad Autónoma Metropolitana, primero en la Unidad Cuajimalpa y luego en la Unidad Azcapotzalco. Durante este periodo, se ha investigado el desarrollo de (i) ligandos orgánicos para la obtención de compuestos de coordinación con boro, (ii) compuestos de coordinación de diorganoestaño(IV) obtenidos directamente por efecto templado, (iii) aplicaciones y líneas de investigación derivadas de los compuestos de coordinación de boro y estaño desarrollados, (iv) polímeros de coordinación y redes metal-orgánicas (MOF), (v) infiltración de polímeros de coordinación y MOFs, (vi) modulación de banda prohibida y propiedades de luminiscencia de polímeros de coordinación y MOFs, (vii ) propiedades biológicas de polímeros de coordinación y MOFs, (viii) sistemas macrocíclicos y sus aplicaciones, y (ix) ensambles supramoleculares y sus aplicaciones.. Realizando más de 90 artículos de investigación y alrededor de 20 patentes durante este periodo. Toda esta investigación involucra el diseño y desarrollo de un sistema molecular o material particular con propiedades fisicoquímicas precisas para lograr un objetivo, para eventualmente cumplir una función o incluso ser (multi)funcional para fines biológicos, científicos o industriales. Para seguir todas estas líneas de investigación, se destacaron algunos conceptos y posteriormente se presentó el compendio. La adquisición de este conocimiento y experiencia ha permitido diseñar y desarrollar sistemas moleculares y materiales para lograr funciones y aplicaciones específicas. Esto también ha ayudado a otros grupos de investigación a comprender sus propios sistemas de estudio y ha impulsado el campo de investigación de la química aplicada a un nivel multifuncional.
Downloads
References
Wadhwa, P.; Mittal, A. Quantitative Structure-Property Relationship (QSPR) Modeling Applications in Formulation Development. In Computer Aided Pharmaceutics and Drug Delivery: An Application Guide for Students and Researchers of Pharmaceutical Sciences, Saharan, V. A. Ed.; Springer Nature Singapore, 2022; pp 543-560. DOI: https://doi.org/10.1007/978-981-16-5180-9_17
Grover, M.; Singh, B.; Bakshi, M.; Singh, S. Quantitative structure–property relationships in pharmaceutical research – Part 1. Pharmaceutical Science & Technology Today 2000, 3 (1), 28-35. DOI: https://doi.org/10.1016/S1461-5347(99)00214-X. DOI: https://doi.org/10.1016/S1461-5347(99)00214-X
Le, T.; Epa, V. C.; Burden, F. R.; Winkler, D. A. Chem. Rev. 2012, 112, 2889-2919. DOI: http://dx.doi.org/10.1021/cr200066h. DOI: https://doi.org/10.1021/cr200066h
Sizochenko, N.; Leszczynski, J. J. Nanotox. Nanomed. 2016, 1, 1-16. DOI: http://dx.doi.org/10.4018/JNN.2016010101. DOI: https://doi.org/10.4018/JNN.2016010101
Li, Y. K.; Ma, X. Y. Adv. Mater. Res. 2013, 740, 306-309. DOI: https://dx.doi.org/10.4028/www.scientific.net/AMR.740.306. DOI: https://doi.org/10.4028/www.scientific.net/AMR.740.306
Trolier-McKinstry, S.; Newnham, R. E. Materials Engineering: Bonding, Structure, and Structure-Property Relationships; Cambridge University Press, 2017. DOI: http://dx.doi.org/10.1017/9781316217818. DOI: https://doi.org/10.1017/9781316217818
X-Ray Diffraction Methods. In Materials Characterization, 2013; pp 47-82. DOI: https://doi.org/10.1002/9783527670772.ch2
Scanning Electron Microscopy. In Materials Characterization, 2013; pp 127-161. DOI: https://doi.org/10.1002/9783527670772.ch4
X-Ray Spectroscopy for Elemental Analysis. In Materials Characterization, 2013; pp 191-219. DOI: https://doi.org/10.1002/9783527670772.ch6
Vibrational Spectroscopy for Molecular Analysis. In Materials Characterization, 2013; pp 283-332. DOI: https://doi.org/10.1002/9783527670772.ch9
Thermal Analysis. In Materials Characterization, 2013; pp 333-365. DOI: https://doi.org/10.1002/9783527670772.ch10
Silverstein, R. M.; Webster, F. X.; Kiemle, D. J.; Bryce, D. L. Spectrometric identification of organic compounds / Robert M. Silverstein, Francis X. Webster, David J. Kiemle, State University of New York, College of Environmental Science & Forestry; David L. Bryce, University of Ottawa; John Wiley and Sons, Inc., 2015.
Bhatt, V. Chapter 1 - Basic Coordination Chemistry. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 1-35. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00001-X
Bhatt, V. Chapter 4 - Thermodynamics and Kinetics of Complex Formation. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 111-137. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00004-5
Bhatt, V. Chapter 7 - Basic Organometallic Chemistry. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 173-190. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00007-0
Bhatt, V. Chapter 2 - Basic Concepts of Symmetry and Group Theory. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 37-62. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00002-1
Bhatt, V. Chapter 5 - Reactions in Octahedral Complexes. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 139-159. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00005-7
Bhatt, V. Chapter 3 - Isomerism in Coordination Complexes. In Essentials of Coordination Chemistry, Bhatt, V. Ed.; Academic Press, 2016; pp 63-109. DOI: https://doi.org/10.1016/B978-0-12-803895-6.00003-3
Weber, B. What Are Complexes? In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 1-11. DOI: https://doi.org/10.1007/978-3-662-66441-4_1
Weber, B. Structure and Nomenclature. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 13-34. DOI: https://doi.org/10.1007/978-3-662-66441-4_2
Weber, B. Stability of Coordination Compounds. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 87-105. DOI: https://doi.org/10.1007/978-3-662-66441-4_6
Weber, B. Supramolecular Coordination Chemistry. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 121-138. DOI: https://doi.org/10.1007/978-3-662-66441-4_8
Weber, B. Bioinorganic Chemistry. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 215-237. DOI: https://doi.org/10.1007/978-3-662-66441-4_12
Weber, B. Catalysis. In Coordination Chemistry: Basics and Current Trends, Weber, B. Ed.; Springer Berlin Heidelberg, 2023; pp 239-261. DOI: https://doi.org/10.1007/978-3-662-66441-4_13
Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design, Analysis and Application; The Royal Society of Chemistry, 2008. DOI: http://dx.doi.org/10.1039/9781847558862. DOI: https://doi.org/10.1039/9781847558862
Guo, X.; Geng, S.; Zhuo, M.; Chen, Y.; Zaworotko, M. J.; Cheng, P.; Zhang, Z. Coord. Chem. Rev. 2019, 391, 44-68. DOI: https://doi.org/10.1016/j.ccr.2019.04.003. DOI: https://doi.org/10.1016/j.ccr.2019.04.003
Saalfrank, R. W.; Maid, H.; Scheurer, A. Angew. Chem. Int. Ed. 2008, 47, 8794-8824. DOI: https://doi.org/10.1002/anie.200702075 (acccessed 2024/08/14). DOI: https://doi.org/10.1002/anie.200702075
Hong, M.-C.; Chen, L. Design and construction of coordination polymers; Wiley, 2009. DOI: http://dx.doi.org/10.1002/9780470467336. DOI: https://doi.org/10.1002/9780470467336
Lehn, J.-M. Proc. Natl. Acad. Sci. 2002, 99, 4763-4768. DOI: http://dx.doi.org/10.1073/pnas.072065599 (acccessed 2024/08/14). DOI: https://doi.org/10.1073/pnas.072065599
Beltran, H. I.; Zamudio-Rivera, L. S.; Mancilla, T.; Santillan, R.; Farfan, N. Chem. Eur. J. 2003, 9, 2291-2306. DOI: http://dx.doi.org/10.1002/chem.200204260. DOI: https://doi.org/10.1002/chem.200204260
Farfan, N.; Mancilla, T.; Santillan, R.; Gutierrez, A.; Zamudio-Rivera, L. S.; Beltran, H. I. J. Organomet. Chem. 2004, 689, 3481-3491. DOI: http://dx.doi.org/10.1016/j.jorganchem.2004.07.053. DOI: https://doi.org/10.1016/j.jorganchem.2004.07.053
Zamudio-Rivera, L. S.; George-Tellez, R.; Lopez-Mendoza, G.; Morales-Pacheco, A.; Flores, E.; Hopfl, H.; Barba, V.; Fernandez, F. J.; Cabirol, N.; Beltran, H. I. Inorg. Chem. 2005, 44, 5370-5378. DOI: http://dx.doi.org/10.1021/ic048628o. DOI: https://doi.org/10.1021/ic048628o
Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem. Int. Ed. 2004, 43, 2334-2375. DOI: https://doi.org/10.1002/anie.200300610 (acccessed 2024/06/07). DOI: https://doi.org/10.1002/anie.200300610
Bünzli, J.-C. G. J. Coord. Chem. 2014, 67, 3706-3733. DOI: http://dx.doi.org/10.1080/00958972.2014.957201. DOI: https://doi.org/10.1080/00958972.2014.957201
Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. Cryst. Eng. Comm. 2012, 14, 3001-3004, 10.1039/C2CE06488J. DOI: https://dx.doi.org/10.1039/C2CE06488J. DOI: https://doi.org/10.1039/c2ce06488j
Beltran, H. I.; Abreu, A.; Zamudio-Rivera, L. S.; Mancilla, T.; Santillan, R.; Farfan, N. Rev. Soc. Quim. Mex. 2001, 45, 152-158.
Beltran, H. I.; Alas, S. J.; Santillan, R.; Farfan, N. Can. J. Chem. 2002, 80, 801-812. DOI: https://dx.doi.org/10.1139/v02-109. DOI: https://doi.org/10.1139/v02-109
Abreu, A.; Alas, S. J.; Beltran, H. I.; Santillan, R.; Farfan, N. J. Organomet. Chem. 2006, 691, 337-348. DOI: https://dx.doi.org/10.1016/j.jorganchem.2005.08.042. DOI: https://doi.org/10.1016/j.jorganchem.2006.03.040
Beltran, H. I.; Zamudio-Rivera, L. S.; Mancilla, T.; Santillan, R.; Farfan, N. J. Organomet. Chem. 2002, 657, 194-204. DOI: https://doi.org/10.1016/S0022-328X(02)01418-3. DOI: https://doi.org/10.1016/S0022-328X(02)01418-3
Mancilla, T.; Zamudio-Rivera, L. S.; Hiram; Beltrán, I.; Santillan, R.; Farfán, N. ARKIVOC 2005, 2005 (6), 366-376. DOI: http://dx.doi.org/10.3998/ark.5550190.0006.632. DOI: https://doi.org/10.3998/ark.5550190.0006.632
Gielen, M.; Davies, A. G.; Pannell, K.; Tiekink, E. Tin Chemistry: Fundamentals, Frontiers, and Applications; Wiley, 2008. DOI: http://dx.doi.org/10.1002/9780470758090. DOI: https://doi.org/10.1002/9780470758090
Muñoz-Flores, B. M.; Santillán, R.; Farfán, N.; Álvarez-Venicio, V.; Jiménez-Pérez, V. M.; Rodríguez, M.; Morales-Saavedra, O. G.; Lacroix, P. G.; Lepetit, C.; Nakatani, K. J. Organomet. Chem. 2014, 769, 64-71. DOI: http://dx.doi.org/10.1016/j.jorganchem.2014.07.002. DOI: https://doi.org/10.1016/j.jorganchem.2014.07.002
Beltran, H. I.; Santillan, R.; Farfan, N. Biological aspects of organotins: perspectives in structural and molecular biology. In Tin Chemistry, 2008; pp 482-496.
Beltran, H. I.; Damian-Zea, C.; Hernandez-Ortega, S.; Nieto-Camacho, A.; Ramirez-Apan, M. T. J. Inorg. Biochem. 2007, 101, 1070-1085. DOI: https://dx.doi.org/10.1016/j.jinorgbio.2007.04.002. DOI: https://doi.org/10.1016/j.jinorgbio.2007.04.002
Zugazagoitia, J. S.; Maya, M.; Damián-Zea, C.; Navarro, P.; Beltrán, H. I.; Peon, J. Excited-State J. Phys. Chem. A 2010, 114 (2), 704-714. DOI: http://dx.doi.org/10.1021/jp904784b. DOI: https://doi.org/10.1021/jp904784b
Hernández-Altamirano, R.; Mena-Cervantes, V. Y.; Chávez-Miyauchi, T. E.; Nieto-Álvarez, D. A.; Domínguez-Aguilar, M. A.; Zamudio-Rivera, L. S.; Barba, V.; Fernández-Perrino, F. J.; Pérez-Miranda, S.; Beltrán, H. I. Polyhedron 2013, 52, 301-307. DOI: http://dx.doi.org/10.1016/j.poly.2012.09.022. DOI: https://doi.org/10.1016/j.poly.2012.09.022
González-Rivas, N.; Cuevas-Yañez, E.; Barba, V.; Beltran, H. I.; Reyes, H. Inorg. Chem. Commun. 2013, 37, 110-113. DOI: http://dx.doi.org/10.1016/j.inoche.2013.09.035. DOI: https://doi.org/10.1016/j.inoche.2013.09.035
Barba, V.; Vega, E.; Luna, R.; Höpfl, H.; Beltrán, H. I.; Zamudio-Rivera, L. S. J. Organomet. Chem. 2007, 692 (4), 731-739. DOI: https://doi.org/10.1016/j.jorganchem.2006.09.064. DOI: https://doi.org/10.1016/j.jorganchem.2006.09.064
Braun, M. Eur. J. Org. Chem. 2024, 27 (14). DOI: http://dx.doi.org/10.1002/ejoc.202400052. DOI: https://doi.org/10.1002/ejoc.202400052
Abdou-Mohamed, A.; Aupic, C.; Fournet, C.; Parrain, J. L.; Chouraqui, G.; Chuzel, O. Chem. Soc. Rev. 2023, 52, 4381-4391. DOI: https://dx.doi.org/10.1039/d3cs00163f. DOI: https://doi.org/10.1039/D3CS00163F
Schlecht, S.; Frank, W.; Braun, M. Beilstein J. Org. Chem. 2011, 7, 615-621. DOI: http://dx.doi.org/10.3762/bjoc.7.72. DOI: https://doi.org/10.3762/bjoc.7.72
Zhang, G.; Zhang, Z.; Hou, M.; Cai, X.; Yang, K.; Yu, P.; Song, Q. Nat. Commun. 2022, 13 (1), 2624. DOI: http://dx.doi.org/10.1038/s41467-022-30287-7. DOI: https://doi.org/10.1038/s41467-022-30287-7
Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129 (21), 6716-6717. DOI: http://dx.doi.org/10.1021/ja0716204. DOI: https://doi.org/10.1021/ja0716204
Rivera, J. M.; Reyes, H.; Cortés, A.; Santillan, R.; Lacroix, P. G.; Lepetit, C.; Nakatani, K.; Farfán, N. Chem. Mater. 2006, 18 (5), 1174-1183. DOI: http://dx.doi.org/10.1021/cm051589+. DOI: https://doi.org/10.1021/cm051589+
Lopez-Espejel, M.; Gomez-Trevino, A.; Munoz-Flores, B. M.; Treto-Suarez, M. A.; Schott, E.; Paez-Hernandez, D.; Zarate, X.; Jimenez-Perez, V. M. J. Mater. Chem. B 2021, 9 (37), 7698-7712. DOI: http://dx.doi.org/10.1039/d1tb01405f. DOI: https://doi.org/10.1039/D1TB01405F
Berrones‐Reyes, J. C.; Muñoz‐Flores, B. M.; Uscanga‐Palomeque, A. C.; Santillán, R.; Del Angel‐Mosqueda, C.; Nobis, D.; Cochrane, M. A.; Magennis, S. W.; Jiménez‐Pérez, V. M. ChemistrySelect 2020, 5 (5), 1623-1627. DOI: http://dx.doi.org/10.1002/slct.201904816. DOI: https://doi.org/10.1002/slct.201904816
García-López, M. C.; Muñoz-Flores, B. M.; Jiménez-Pérez, V. M.; Moggio, I.; Arias, E.; Chan-Navarro, R.; Santillan, R. Dyes and Pigments 2014, 106, 188-196. DOI: http://dx.doi.org/10.1016/j.dyepig.2014.02.021. DOI: https://doi.org/10.1016/j.dyepig.2014.02.021
Yousefi, M.; Sedaghat, T.; Simpson, J.; Shafiei, M. Appl. Organomet. Chem. 2019, 33 (11), e5137. DOI: https://doi.org/10.1002/aoc.5137. DOI: https://doi.org/10.1002/aoc.5137
Hernandez-Ahuactzi, I. F.; Hopfl, H.; Barba, V.; Roman-Bravo, P.; Zamudio-Rivera, L. S.; Beltran, H. I. Eur. J. Inorg. Chem. 2008, 17, 2746-2755. DOI: http://dx.doi.org/10.1002/ejic.200800222. DOI: https://doi.org/10.1002/ejic.200800222
Loera-Serna, S.; Oliver-Tolentino, M. A.; de Lourdes López-Núñez, M.; Santana-Cruz, A.; Guzmán-Vargas, A.; Cabrera-Sierra, R.; Beltrán, H. I.; Flores, J. J. Alloys Compd. 2012, 540, 113-120. DOI: http://dx.doi.org/10.1016/j.jallcom.2012.06.030. DOI: https://doi.org/10.1016/j.jallcom.2012.06.030
Loera-Serna, S.; Núñez, L. L.; Flores, J.; López-Simeon, R.; Beltrán, H. I. RSC Adv. 2013, 3 (27), 10962. DOI: http://dx.doi.org/10.1039/c3ra40726h. DOI: https://doi.org/10.1039/c3ra40726h
González Chávez, F.; Nájera, H.; Leyva, M. A.; Solorza-Feria, O.; González, F.; Beltrán, H. I. Cryst. Growth Des. 2020, 20 (7), 4273-4292. DOI: http://dx.doi.org/10.1021/acs.cgd.9b01542. DOI: https://doi.org/10.1021/acs.cgd.9b01542
González Chávez, F.; Beltrán, H. I. New J. Chem. 2021, 45 (15), 6600-6610. DOI: http://dx.doi.org/10.1039/d0nj04055j. DOI: https://doi.org/10.1039/D0NJ04055J
Loera-Serna, S.; Ortiz, E.; Beltrán, H. I. New J. Chem. 2017, 41 (8), 3097-3105. DOI: http://dx.doi.org/10.1039/c6nj03912j. DOI: https://doi.org/10.1039/C6NJ03912J
Loera-Serna, S.; Flores, J.; Navarrete-Lopez, A. M.; Diaz de Leon, J. N.; Beltran, H. I. Chem. Eur. J. 2019, 25 (17), 4398-4411. DOI: http://dx.doi.org/10.1002/chem.201805548. DOI: https://doi.org/10.1002/chem.201805548
Cortes-Suarez, J.; Celis-Arias, V.; Beltran, H. I.; Tejeda-Cruz, A.; Ibarra, I. A.; Romero-Ibarra, J. E.; Sanchez-Gonzalez, E.; Loera-Serna, S. ACS Omega 2019, 4 (3), 5275-5282. DOI: http://dx.doi.org/10.1021/acsomega.9b00330. DOI: https://doi.org/10.1021/acsomega.9b00330
Alfonso Herrera, L. Á.; Beltrán, H. I. Coord. Chem. Rev. 2024, 505. DOI: https://dx.doi.org/10.1016/j.ccr.2024.215658. DOI: https://doi.org/10.1016/j.ccr.2024.215658
Alfonso-Herrera, L. A.; Rodriguez-Giron, J. S.; de Sampedro, H. I. G.; Sanchez-Martinez, D.; Navarrete-Lopez, A. M.; Beltran, H. I. Chempluschem 2024, 89 (5), e202300579. DOI: https://dx.doi.org/10.1002/cplu.202300579. DOI: https://doi.org/10.1002/cplu.202300579
Celis-Arias, V.; Garduno-Wilchis, I. A.; Alarcon, G.; Gonzalez Chavez, F.; Garrido Guerrero, E.; Beltran, H. I.; Loera-Serna, S. Front. Chem. 2022, 10, 1065622. DOI: http://dx.doi.org/10.3389/fchem.2022.1065622. DOI: https://doi.org/10.3389/fchem.2022.1065622
Lopez-Ruiz, L. E.; Salas-Juárez, C. J.; Garduño-Wilches, I.; Beltran, H. I.; Orozco-Valencia, U.; López-Esquivel, R. I.; Guzman-Olguin, J. C.; Centeno-Alvarez, M.; Guzman-Mendoza, J. J. Lumin. 2023, 263. DOI: http://dx.doi.org/10.1016/j.jlumin.2023.120020. DOI: https://doi.org/10.1016/j.jlumin.2023.120020
Celis-Arias, V.; Loera-Serna, S.; Beltran, H. I.; Alvarez-Zeferino, J. C.; Garrido, E.; Ruiz-Ramos, R. New J. Chem. 2018, 10.1039/C8NJ00120K. DOI: http://dx.doi.org/10.1039/C8NJ00120K. DOI: https://doi.org/10.1039/C8NJ00120K
Arenas-Vivo, A.; Celis Arias, V.; Amariei, G.; Rosal, R.; Izquierdo-Barba, I.; Hidalgo, T.; Vallet-Regi, M.; Beltran, H. I.; Loera-Serna, S.; Horcajada, P. Pharmaceutics 2023, 15 (1). DOI: https://dx.doi.org/10.3390/pharmaceutics15010301. DOI: https://doi.org/10.3390/pharmaceutics15010301
Loera-Serna, S.; Beltran, H. I.; Mendoza-Sanchez, M.; Alvarez-Zeferino, J. C.; Almanza, F.; Fernandez-Luqueno, F. Environ. Sci. Pollut. Res. 2024, 31 (9), 13270-13283. DOI: http://dx.doi.org/10.1007/s11356-023-31728-6. DOI: https://doi.org/10.1007/s11356-023-31728-6
Marrufo-Hernandez, N. A.; Najera, H.; Gonzalez Chavez, F.; Beltran, H. I. Food Chem. 2024, 439, 138178. DOI: http://dx.doi.org/10.1016/j.foodchem.2023.138178. DOI: https://doi.org/10.1016/j.foodchem.2023.138178
Sosa-Sanchez, J. L.; Sosa-Sanchez, A.; Farfan, N.; Zamudio-Rivera, L. S.; Lopez-Mendoza, G.; Flores, J. P.; Beltran, H. I. Chem. Eur. J. 2005, 11 (14), 4263-4273. DOI: http://dx.doi.org/10.1002/chem.200500003. DOI: https://doi.org/10.1002/chem.200500003
Beltran, H. I.; Esquivel, R.; Lozada-Cassou, M.; Dominguez-Aguilar, M. A.; Sosa-Sanchez, A.; Sosa-Sanchez, J. L.; Hopfl, H.; Barba, V.; Luna-Garcia, R.; Farfan, N.; et al. Chem. Eur. J. 2005, 11 (9), 2705-2715. DOI: https://dx.doi.org/10.1002/chem.200400955. DOI: https://doi.org/10.1002/chem.200400955
Beltran, H. I.; Esquivel, R.; Sosa-Sanchez, A.; Sosa-Sanchez, J. L.; Hopfl, H.; Barba, V.; Farfan, N.; Garcia, M. G.; Olivares-Xometl, O.; Zamudio-Rivera, L. S. Inorg. Chem. 2004, 43 (12), 3555-3557. DOI: https://dx.doi.org/10.1021/ic049634n. DOI: https://doi.org/10.1021/ic049634n
Gutierrez-Meza, E.; Noria, R.; Granados, G.; Gomez-Vidales, V.; Ramirez, J. Z.; Beltran, H. I.; Peon, J. J. Phys. Chem. B 2012, 116 (48), 14107-14114. DOI: http://dx.doi.org/10.1021/jp3078453. DOI: https://doi.org/10.1021/jp3078453
Mena-Cervantes, V. Y.; Hernández-Altamirano, R.; Buenrostro-González, E.; Beltrán, H. I.; Zamudio-Rivera, L. S. Energy & Fuels 2010, 25 (1), 224-231. DOI: http://dx.doi.org/10.1021/ef101023r. DOI: https://doi.org/10.1021/ef101023r
Mena-Cervantes, V. Y.; Hernández-Altamirano, R.; Buenrostro-González, E.; Beltrán, H. I.; Zamudio-Rivera, L. S. Fuel 2013, 110, 293-301. DOI: http://dx.doi.org/10.1016/j.fuel.2012.12.071. DOI: https://doi.org/10.1016/j.fuel.2012.12.071
Cerón-Camacho, R.; Cisneros-Dévora, R.; Soto-Castruita, E.; Pons-Jiménez, M.; Beltrán, H. I.; Martínez-Magadán, J.-M.; Zamudio-Rivera, L. S. Arab. J. Chem. 2016. DOI: http://dx.doi.org/10.1016/j.arabjc.2016.08.008. DOI: https://doi.org/10.1016/j.arabjc.2016.08.008
Pons-Jiménez, M.; Cartas-Rosado, R.; Martínez-Magadán, J. M.; Oviedo-Roa, R.; Cisneros-Dévora, R.; Beltrán, H. I.; Zamudio-Rivera, L. S. Colloids Surf. Physicochem. Eng. Aspects 2014, 455, 76-91. DOI: http://dx.doi.org/10.1016/j.colsurfa.2014.04.051. DOI: https://doi.org/10.1016/j.colsurfa.2014.04.051
Soto‐Castruita, E.; Cisneros‐Dévora, R.; Cerón‐Camacho, R.; Ramírez‐Pérez, J. F.; Servín‐Nájera, A. G.; Oviedo‐Roa, R.; Martínez‐Magadán, J. M.; Beltrán, H. I.; Zamudio‐Rivera, L. S. ChemistrySelect 2023, 8 (36). DOI: http://dx.doi.org/10.1002/slct.202301790. DOI: https://doi.org/10.1002/slct.202301790
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hiram Isaac Beltran Conde
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.