Hydrogen Bonding Processes During Self-protonation of Natural α-hydroxyquinones
DOI:
https://doi.org/10.29356/jmcs.v69i1.2316Keywords:
α-hydroquinones, self-protonation, hydrogen bonding, electroaccepting power, salicylic acidAbstract
The passage from non-substituted quinone to hydroquinone moieties involves the exchange of two-electron and two-protons, however, the presence of hydroxyl groups in the α position to the carbonyl group of the quinone induce a mechanistic change in which the quinone plays the role of electron acceptor and proton donor. This feature promotes a self-protonation mechanism which can be characterized in the framework of the ECE-DISP theory. However, when additional hydroxyl groups are contained in the quinone structure, hydrogen bonding becomes an additional competition factor that was studied in this work using a series of synthetic and natural quinones with different structures. The number of hydroxyl groups on the quinone structure was studied from the point of view of electrochemical mechanisms and descriptors of reactivity. Cyclic voltammetry, mechanistic simulation and electronic structure calculations were used as an approach to understand the interplay between electron transfer, proton transfer and hydrogen bonding association in α-hydroxyquinones.
Resumen. La conversión quinona-hidroquinona involucra el intercambio de dos electrones y dos protones; sin embargo, la presencia de grupos hidroxilo en la posición α respecto al carbonilo de la quinona, induce un cambio mecanístico en el cual el núcleo quinoide juega ahora el papel de acceptor electrónico y donador de protón. Esta característica promueve un mecanismo de autoprotonación que puede ser caracterizado mediante la teoría ECE-DISP. Sin embargo, cuando hay grupos hidroxilo adicionales dentro de la estructura quinoide, la formación de puentes de hidrógeno se convierte en una ruta competitiva adicional, la cual fue estudiada en este trabajo empleando una serie de compuestos sintéticos y naturales. El número de grupos hidroxilo y su influencia fueron estudiados desde el punto de vista de mecanismos electroquímicos y descriptores de reactividad. A través del uso de voltamperometría cíclica, simulación mecanística y cálculos de estructura electronica, se realizó una aproximación para comprender la interrelación entre la transferencia protónica, electrónica y la asociación a través de puentes de hidrógeno en α-hidroxiquinonas.
Downloads
References
Thomson, R. in: Naturally Occurring Quinones; Elsevier, 2012.
Thomson, R. H. Pharm Weekbl. 1991, 13, 70–73. DOI: https://doi.org/10.1007/BF01974983
Kristensen, S. B.; van Mourik, T.; Pedersen, T. B.; Sørensen, J. L.; Muff, J. Sci. Rep. 2020 10, 1–10. DOI: https://doi.org/10.1038/s41598-020-70522-z. DOI: https://doi.org/10.1038/s41598-020-70522-z
Gutiérrez-Fernández, J.; Kaszuba, K.; Minhas, G. S.; Baradaran, R.; Tambalo, M.; Gallagher, D. T.; Sazanov, L. A. Nat. Commun. 2020, 11, 1–17. DOI: https://doi.org/10.1038/s41467-020-17957-0. DOI: https://doi.org/10.1038/s41467-020-17957-0
Diogo, E. B. T.; Dias, G. G.; Rodrigues, B. L.; Guimarães, T. T.; Valença, W. O.; Camara, C. A.; De Oliveira, R. N.; Da Silva, M. G.; Ferreira, V. F.; De Paiva, Y. G.; Goulart, M. O. F.; Menna-Barreto, R. F. S.; De Castro, S. L.; Da Silva Júnior, E. N. Bioorg. Med. Chem. 2013, 21, 6337–6348. DOI: https://doi.org/10.1016/J.BMC.2013.08.055. DOI: https://doi.org/10.1016/j.bmc.2013.08.055
O’Brien, P. J. Chem. Biol. Interact. 1991, 80, 1–41. DOI: https://doi.org/https://doi.org/10.1016/0009-2797(91)90029-7. DOI: https://doi.org/10.1016/0009-2797(91)90029-7
Silva, T. L.; de Azevedo, M. de L. S. G.; Ferreira, F. R.; Santos, D. C.; Amatore, C.; Goulart, M. O. F. Curr. Opin Electrochem. 2020, 24, 79–87. DOI: https://doi.org/https://doi.org/10.1016/j.coelec.2020.06.011. DOI: https://doi.org/10.1016/j.coelec.2020.06.011
Ferreira, F. D. R.; Ferreira, S. B.; Araújo, A. J.; Marinho Filho, J. D. B.; Pessoa, C.; Moraes, M. O.; Costa-Lotufo, L. V.; Montenegro, R. C.; Da Silva, F. D. C.; Ferreira, V. F.; Da Costa, J. G.; De Abreu, F. C.; Goulart, M. O. F. Electrochim. Acta. 2013, 110, 634–640. DOI: https://doi.org/10.1016/J.ELECTACTA.2013.04.148. DOI: https://doi.org/10.1016/j.electacta.2013.04.148
Aguilar-Martinez, M.; Macías-Ruvalcaba, N. A.; Bautista-Martínez, J. A.; Gómez, M.; González, F. J.; González, I. Curr. Org. Chem. 2004, 8, 1721–1738.
Ferraz, P. A. L.; De Abreu, F. C.; Pinto, A. V.; Glezer, V.; Tonholo, J.; Goulart, M. O. F. J. Electroanal. Chem. 2001, 507, 275–286. DOI: https://doi.org/10.1016/S0022-0728(01)00439-9. DOI: https://doi.org/10.1016/S0022-0728(01)00439-9
Abreu, F. C. de; Ferraz, P. A. de L.; Goulart, M. O. F. J. Braz. Chem. Soc. 2002, 13, 19–35. DOI: https://doi.org/10.1590/S0103-50532002000100004. DOI: https://doi.org/10.1590/S0103-50532002000100004
Shi, R. R. S.; Tessensohn, M. E.; Lauw, S. J. L.; Foo, N. A. B. Y.; Webster, R. D. Chem. Commun.2019, 55, 2277–2280. DOI: https://doi.org/10.1039/C8CC09188A. DOI: https://doi.org/10.1039/C8CC09188A
Diane K. Smith. The Chemical Record. 2021, 21, 2488–2501. DOI: https://doi.org/10.1002/tcr.202100186
Gritzner, G.; Kůta, J. Electrochim. Acta. 1984, 29, 869–873. DOI: https://doi.org/https://doi.org/10.1016/0013-4686(84)80027-4. DOI: https://doi.org/10.1016/0013-4686(84)80027-4
Aguilar-Martinez, M.; Macias-Ruvalcaba, N. A.; Bautista-Martinez, J. A.; Gomez, M.; Gonzalez, F. J.; Gonzalez, I. Curr. Org. Chem. 2005, 8, 1721–1738. DOI: https://doi.org/10.2174/1385272043369548. DOI: https://doi.org/10.2174/1385272043369548
Costentin, C. E. Chem. Rev. 2008, 108, 2145–2179. DOI: https://doi.org/10.1021/cr068065t. DOI: https://doi.org/10.1021/cr068065t
Amatore, C.; Capobianco, G.; Farnia, G.; Sandona, G.; Saveant, J. M.; Severin, M. G.; Vianello, E. J. Am. Chem. Soc. 1985, 107, 1815–1824. DOI: https://doi.org/10.1021/ja00293a003.
Kupchan, S. M.; Karim, A.; Marcks, C. J. Org. Chem. 1969, 34, 3912–3918. DOI: https://doi.org/10.1021/jo01264a036
Frontana, C.; Frontana-Uribe, B. A.; González, I. Electrochim. Acta. 2003, 48, 3593–3598. DOI: https://doi.org/10.1016/S0013-4686(03)00479-1. DOI: https://doi.org/10.1016/S0013-4686(03)00479-1
Frontana, C.; González, I. J. Electroanal. Chem. 2007, 603, 155–165. DOI: https://doi.org/10.1016/J.JELECHEM.2007.01.024. DOI: https://doi.org/10.1016/j.jelechem.2007.01.024
Maldonado, T.; Martínez-González, E.; Frontana, C. Electroanalysis. 2016, 28, 2827–2833. DOI: https://doi.org/10.1002/ELAN.201600255. DOI: https://doi.org/10.1002/elan.201600255
Armendáriz-Vidales, G.; Martínez-González, E.; Cuevas-Fernández, H. J.; Fernández-Campos, D. O.; Burgos-Castillo, R. C.; Frontana, C. Electrochim. Acta. 2013, 110, 628–633. DOI: https://doi.org/10.1016/j.electacta.2013.05.123. DOI: https://doi.org/10.1016/j.electacta.2013.05.123
Gómez, M.; González, F. J.; González, I. Electroanalysis. 2003, 15, 635–645. DOI: https://doi.org/10.1002/ELAN.200390080. DOI: https://doi.org/10.1002/elan.200390080
Gómez, M.; González, F. J.; González, I. J. Electroanal. Chem. 2005, 578, 193–202. DOI: https://doi.org/10.1016/j.jelechem.2004.12.036. DOI: https://doi.org/10.1016/j.jelechem.2004.12.036
Nadjo, L.; Savéant, J. M. J. Electroanal. Chem. Interfacial Electrochem. 1973, 48, 113–145. DOI: https://doi.org/https://doi.org/10.1016/S0022-0728(73)80300-6. DOI: https://doi.org/10.1016/S0022-0728(73)80300-6
Schenck, G.; Baj, K.; Iggo, J. A.; Wallace, M. Anal. Chem. 2022, 94, 8115–8119. DOI: https://doi.org/10.1021/ACS.ANALCHEM.2C00200/ASSET/IMAGES/LARGE/AC2C00200_0001.JPEG. DOI: https://doi.org/10.1021/acs.analchem.2c00200
Amatore, C.; Capobianco, G.; Farnia, G.; Sandona, G.; Saveant, J. M.; Severin, M. G.; Vianello, E. J. Am. Chem. Soc. 1985, 107, 1815–1824. DOI: https://doi.org/10.1021/ja00293a003
Armendáriz-Vidales, G.; Hernández-Muñoz, L. S.; González, F. J.; de Souza, A. A.; de Abreu, F. C.; Jardim, G. A. M.; da Silva, E. N. Jr.; Goulart, M. O. F.; Frontana, C. J. Org. Chem. 2014, 79, 5201–5208. DOI: https://doi.org/10.1021/jo500787q. DOI: https://doi.org/10.1021/jo500787q
Martínez-González, E.; Armendáriz-Vidales, G.; Ascenso, J. R.; Marcos, P. M.; Frontana, C. J. Org. Chem. 2015, 80, 4581–4589. DOI: https://doi.org/10.1021/acs.joc.5b00441.
Martínez-González, E.; Frontana, C. J. Org. Chem. 2014, 79, 1131–1137. DOI: https://doi.org/10.1021/jo402565t.
Armendáriz-Vidales, G.; Frontana, C. Org. Biomol. Chem. 2014, 12, 6393–6398. DOI: https://doi.org/10.1039/C4OB01207K. DOI: https://doi.org/10.1039/C4OB01207K
Parr, R. G.; Szentpály, L. v.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922–1924. DOI: https://doi.org/10.1021/ja983494x. DOI: https://doi.org/10.1021/ja983494x
Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI: https://doi.org/10.1021/ja00364a005. DOI: https://doi.org/10.1021/ja00364a005
Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801–3807. DOI: https://doi.org/10.1063/1.436185. DOI: https://doi.org/10.1063/1.436185
Gázquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A. 2007, 111, 1966–1970. DOI: https://doi.org/10.1021/jp065459f. DOI: https://doi.org/10.1021/jp065459f
Contreras, R. R.; Fuentealba, P.; Galván, M.; Pérez, P. Chem. Phys. Lett. 1999, 304, 405–413. DOI: https://doi.org/https://doi.org/10.1016/S0009-2614(99)00325-5. DOI: https://doi.org/10.1016/S0009-2614(99)00325-5
Pal, R.; Chattaraj, P. K. J. Comput. Chem. 2023, 44, 278–297. DOI: https://doi.org/10.1002/JCC.26886. DOI: https://doi.org/10.1002/jcc.26886
Martínez-González, E.; Armendáriz-Vidales, G.; Ascenso, J. R.; Marcos, P. M.; Frontana, C. J. Org. Chem. 2015, 80, 4581–4589. DOI: https://doi.org/10.1021/ACS.JOC.5B00441/SUPPL_FILE/JO5B00441_SI_001.PDF. DOI: https://doi.org/10.1021/acs.joc.5b00441
Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708–5711. DOI: https://doi.org/10.1021/JA00279A008. DOI: https://doi.org/10.1021/ja00279a008
Martínez-González, E.; Frontana, C. J. Org. Chem. 2014, 79, 1131–1137. DOI: https://doi.org/10.1021/JO402565T/SUPPL_FILE/JO402565T_SI_001.PDF. DOI: https://doi.org/10.1021/jo402565t
Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3–10. DOI: https://doi.org/10.29356/jmcs.v52i1.1040.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Georgina Armendáriz-Vidales, Fidel Hernandez-Perez, Felipe J. González-Bravo, Carlos Frontana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.