MCM-41 Acid as a Sustainable Material from Waste Polystyrene

Authors

  • Marco Jared Niño-Castellanos Universidad Autónoma Metropolitana
  • Eduardo Terrés-Rojas Instituto Mexicano del Petróleo
  • Deyanira Angeles-Beltrán Universidad Autónoma Metropolitana

DOI:

https://doi.org/10.29356/jmcs.v69i1.2314

Keywords:

MCM-41-PSSA, acid solid, sustainable

Abstract

This study incorporated expanded polystyrene (PS) from waste packaging into the mesoporous material MCM-41 to obtain PS-MCM-41. Both materials were obtained at room temperature, assisted by the ultrasound technique, and functionalized with sulfonated polystyrene (PSSA, Polystyrene Sulfonic Acid) to obtain MCM-41-PSSA and PS-MCM-41-PSSA. The evolution of the pore structures of the synthesized materials was studied using XRD. The functionalized materials' pore size, specific area, and pore volume were reduced. In addition, the thermal stability of PS-modified MCM-41 was improved concerning the parent material. The NH3-TPD technique showed increased strong acid sites, with MCM-41-PSSA being the most acidic material. Incorporating waste material into a silicon-based mesoporous material and its functionalization with sulfonic groups allows the development of a sustainable heterogeneous material with potential applications in heterogeneous acid catalysis.

 

Resumen. En este estudio se incorporó poliestireno expandido (PS) proveniente de empaques de desecho al material mesoporoso MCM-41 para obtener PS-MCM-41. Ambos materiales fueron obtenidos a temperatura ambiente, asistidos por la técnica de ultrasonido, y funcionalizados con poliestireno sulfonado (PSSA, Polystyrene Sulfonic Acid) para obtener MCM-41-PSSA y PS-MCM-41-PSSA. La evolución de las estructuras porosas de los materiales sintetizados se estudió mediante DRX. Se redujo el tamaño de poro, el área específica y el volumen de poro de los materiales funcionalizados. Además, la estabilidad térmica del MCM-41 modificado con PS mejoró con respecto al material original. La técnica NH3-TPD mostró un aumento de los sitios ácidos fuertes, siendo el MCM-41-PSSA el material más ácido. La incorporación de material de desecho en un material mesoporoso basado en silicio y su funcionalización con grupos sulfónicos permite el desarrollo de un material heterogéneo sostenible con potenciales aplicaciones en catálisis ácida heterogénea.

In the present research work, the incorporation of waste polystyrene into a material based on mesoporous silica is proposed, as well as the sulfonation of this waste polymer to obtain MCM-41-PSSA with sulfonated polystyrene. The structural, chemical, and surface properties of the materials MCM-41 with polystyrene and MCM-41 with functionalized polystyrene were studied.

Downloads

Download data is not yet available.

Author Biographies

Marco Jared Niño-Castellanos, Universidad Autónoma Metropolitana

Departamento de Ciencias Básicas

Eduardo Terrés-Rojas, Instituto Mexicano del Petróleo

IMP

Deyanira Angeles-Beltrán, Universidad Autónoma Metropolitana

Departamento de Ciencias Básicas

References

Baena-González, J.; Santamaria-Echart, A.; Aguirre, J.L.; González, S. Waste Manage (Oxford). 2020, 118, 139-149 DOI: http://dx.doi.org/10.1016/J.WASMAN.2020.08.035. DOI: https://doi.org/10.1016/j.wasman.2020.08.035

Chae, Y.; An, Y. J. Sep. 01, 2018, Elsevier Ltd. DOI: http://dx.doi.org/10.1016/j.envpol.2018.05.008. DOI: https://doi.org/10.1016/j.envpol.2018.05.008

Compa, M.; Alomar C.; Wilcox, C.; Van Sebille, E.; Lebreton, L.; Hardesty, B. D.; Deudero, S. Sci Total Environ. 2019, 678, 188–196 DOI: http://dx.doi.org/10.1016/j.scitotenv.2019.04.355. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.355

Brouwer, R.; Huang, Y.; Huizenga, T.; Frantzi, S.; Le, T.; Sandler, J.; Dijkstra, H.; Van Beukering, P.; Costa, E.; Garaventa, F.; Piazza, V. Ocean Coast. Manag. 2023, 238, 106555 DOI: http://dx.doi.org/10.1016/j.ocecoaman.2023.106555. DOI: https://doi.org/10.1016/j.ocecoaman.2023.106555

Di, J.; Reck, B. K.; Miatto, A.; Graedel, T. E. Resour. Conserv. Recycl. 2021, 167. DOI: http://dx.doi.org/10.1016/j.resconrec.2021.105440. DOI: https://doi.org/10.1016/j.resconrec.2021.105440

Godoy, V.; Blázquez, G.; Calero, M.; Quesada, L.; Martín-Lara, M. A. Environ. Pollut. 2019, 255. DOI: http://dx.doi.org/10.1016/j.envpol.2019.113363. DOI: https://doi.org/10.1016/j.envpol.2019.113363

Chen, M.; Zhou, S.; Wu, L.; Xie, S.; Chen, Y. Macromol. Chem. Phys. 2005, 206, 1896–1902. DOI: http://dx.doi.org/10.1002/macp.200500200. DOI: https://doi.org/10.1002/macp.200500200

Lin Hu, Y.; Rong, Q.; Chen, C.; Bing Liu, X., J. Saudi Chem. Soc. 2023, 27, 101588. DOI: http://dx.doi.org/10.1016/J.JSCS.2022.101588. DOI: https://doi.org/10.1016/j.jscs.2022.101588

Martínez-Edo, G.; Balmori, A.; Pontón, I.; Del Rio, A. M.; Sánchez-García, D. MDPI. 2018. DOI: http://dx.doi.org/10.3390/catal8120617. DOI: https://doi.org/10.3390/catal8120617

Alothman, Z. A. 2012. DOI: http://dx.doi.org/10.3390/ma5122874. DOI: https://doi.org/10.3390/ma5122874

Jabbari, A.; Mahdavi, H.; Nikoorazm, M.; Ghorbani-Choghamarani, A. Res. Chem. Intermed. 2015, 41, 5649–5663. DOI: http://dx.doi.org/10.1007/s11164-014-1690-x. DOI: https://doi.org/10.1007/s11164-014-1690-x

Chaudhary, G.; Gupta, N.; Singh, A. P. Polyhedron. 2021, 207, 115348. DOI: http://dx.doi.org/10.1016/J.POLY.2021.115348. DOI: https://doi.org/10.1016/j.poly.2021.115348

Siril, P. F.; Cross, H. E.; Brown, D.R. J. Mol. Catal A. Chem. 2008, 279, 63–68. DOI: http://dx.doi.org/10.1016/j.molcata.2007.10.001. DOI: https://doi.org/10.1016/j.molcata.2007.10.001

Siril, P. F.; Brown, D. R. J. Mol. Catal. A Chem. 2006, 252, 125–131. DOI: http://dx.doi.org/10.1016/j.molcata.2006.02.050. DOI: https://doi.org/10.1016/j.molcata.2006.02.050

Thirumalaikumar, M. Taylor and Francis Ltd. 2022. DOI: http://dx.doi.org/10.1080/00304948.2021.1979357. DOI: https://doi.org/10.1080/00304948.2021.1979357

Ferreira, C. E. S.; Santos-Vieira, I.; Gomes, C. R.; Balula, S. S.; Cunha-Silva, L. Polymers (Basel). 2024, 16. DOI: http://dx.doi.org/10.3390/polym16070968. DOI: https://doi.org/10.3390/polym16070968

Mandal, T.; Panu, K. J. Synth. Chem. 2024, 13–23. DOI: http://dx.doi.org/10.22034/JSC.2024.451160.1070.

Vetrivel, S.; Chen, C. T.; Kao, H. M. New J. Chem. 2010, 34, 2109–2112. DOI: http://dx.doi.org/10.1039/c0nj00379d. DOI: https://doi.org/10.1039/c0nj00379d

Salim, E.; Afrizal; Zilfadli, 2021, 6, 153–161. DOI: http://dx.doi.org/10.12962/j25493736.v6i2.1091. DOI: https://doi.org/10.12962/j25493736.v6i2.10916

Mokrzycki, J.; Fedyna, M.; Duraczyńska, D.; Marzec, M.; Panek, R.; Franus, W.; Bajda, T.; Karcz, R. Materials, Jan. 2024, 17, 653 DOI: http://dx.doi.org/10.3390/ma17030653. DOI: https://doi.org/10.3390/ma17030653

www.elsevier.nl/locate/micromeso, accessed in May 2024.

Cuesta Zapata, P. M.; Miranda, J. F.; Orellana, F.; Gonzo, E.; Bonini, N. A. Mater. Chem. Phys. 2022, 287. DOI: http://dx.doi.org/10.1016/j.matchemphys.2022.126232. DOI: https://doi.org/10.1016/j.matchemphys.2022.126232

Du, P. H.; Hieu, N. T.; To, T. C.; Bach, L. G.; Tinh, M. X.; Mau, T. X.; Quang, K. D. Adv. Mater. Sci. Eng. 2019, 2019. DOI: http://dx.doi.org/10.1155/2019/8573451. DOI: https://doi.org/10.1155/2019/8573451

Tian, Y.; Zhu, X.; Zhou, S.; Zhao, W.; Xu, Q.; Liu, X. J. Bioresour. Bioprod. 2023, 8, 198–213. DOI: http://dx.doi.org/10.1016/j.jobab.2023.01.003. DOI: https://doi.org/10.1016/j.jobab.2023.01.003

Niluroutu, N.; Shukla, A.; Dhavale, V. M.; Unni, S. M.; Bhat, S. D. Int. J. Hydrogen Energy. 2021, 46, 20640–20649. DOI: http://dx.doi.org/10.1016/j.ijhydene.2021.03.156. DOI: https://doi.org/10.1016/j.ijhydene.2021.03.156

Sakunpongpitiporn, P.; Phasuksom, K.; Paradee, N.; Sirivat, A. RSC Adv. 2019, 9, 6363–6378. DOI: http://dx.doi.org/10.1039/c8ra08801b. DOI: https://doi.org/10.1039/C8RA08801B

https://pubs.acs.org/sharingguidelines, accessed in May 2024.

Yang, C. C.; Chiu, S. J.; Kuo, S. C. Curr. Appl. Phys., Jan. 2011. DOI: http://dx.doi.org/10.1016/j.cap.2010.11.043. DOI: https://doi.org/10.1016/j.cap.2010.11.043

Tran, A. T. K.; Pham, T. T.; Nguyen, Q. H.; Hoang, N. T. T.; Bui, D. T.; Nguyen, M. T.; Nguyen, M. K.; Van Der Bruggen, B. J. Environ. Chem. Eng. 2020, 8. DOI: http://dx.doi.org/10.1016/j.jece.2020.104302. DOI: https://doi.org/10.1016/j.jece.2020.104302

Thommes, M.; Kaneko, K.; Neimark, A. V.; Oliver, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051–1069. DOI: http://dx.doi.org/10.1515/pac-2014-1117. DOI: https://doi.org/10.1515/pac-2014-1117

Nunes, C. D.; Valente, A. A.; Pillinger, M.; Fernandes, A. C.; Romão, C. C.; Rocha, J.; Gonçalves, I. S. J. Mater. Chem. 2002, 12, 1735–1742. DOI: http://dx.doi.org/10.1039/b109678h. DOI: https://doi.org/10.1039/b109678h

Adam, F.; Kueh, C. W. J. Taiwan Inst. Chem. Eng. 2014, 45, 713–723. DOI: http://dx.doi.org/10.1016/j.jtice.2013.07.008. DOI: https://doi.org/10.1016/j.jtice.2013.07.008

Olivares, Y.; Herrera, C.; Seguel, J.; Sepúlveda, C.; Parra, C.; Pecchi, G. Catalysts. 2023, 13. DOI: http://dx.doi.org/10.3390/catal13061024. DOI: https://doi.org/10.3390/catal13061024

Downloads

Published

2025-01-01

Most read articles by the same author(s)