Electroanalytical Study of Metronidazole and its Interaction with Sodium Dodecyl Sulfate in Aqueous Medium

Authors

DOI:

https://doi.org/10.29356/jmcs.v69i1.2302

Keywords:

Metronidazole, sodium dodecyl sulfate, cyclic voltammetry, carbon paste electrode

Abstract

From electrochemical techniques, it was shown that a carbon paste electrode (CPE) served as depositing substrate for molecular aggregatess of sodium dodecyl sulfate, SDS, termed hemimicelles, that adsorb metronidazole, MTZ, molecules selectively from a water-based dissolution containing the protonated species of MTZ. The manner in which both molecules react SDS–MTZ is indeed relevant since it leads to a different electrochemical MTZ reduction mechanism from one where matter transfer controls the reaction rate through difussion with D = (2.991 ± 0.106) x10-6 cm2s-1 (when there is no SDS), to a mechanism where adsorption is the  rate controlling stage.This leads to implementation of a novel methodology used for single quantification purposes of said MTZ in varied aqueous media or even synthetic urine. This is, analytically speaking the work presented here proves that it can function better, or even just as well as methods comprising other seemingly sophisticated and expensive techniques that can be found elsewhere.

 

Resumen. A partir de técnicas electroquímicas, se demostró que un electrodo de pasta de carbón (CPE) servía como sustrato de depósito para agregados moleculares de dodecilsulfato de sodio, SDS, denominados hemimicelas, que adsorben moléculas de metronidazol, MTZ, de forma selectiva a partir de una disolución a base de agua que contiene las especies protonadas de MTZ. La manera en que ambas moléculas reaccionan SDS-MTZ es de hecho relevante ya que conduce a un mecanismo de reducción electroquímico de MTZ diferente de uno donde la transferencia de materia controla la velocidad de reacción a través de difusión con D = (2.991 ± 0.106) x10-6 cm2s-1 (cuando no hay SDS), a un mecanismo donde la adsorción es la etapa de control de la velocidad. Esto conduce a la implementación de una novedosa metodología utilizada para propósitos de cuantificación única de dicha MTZ en variados medios acuosos o incluso orina sintética. Es decir, analíticamente hablando, el trabajo presentado aquí demuestra que puede funcionar mejor, o incluso tan bien como métodos que comprenden otras técnicas aparentemente sofisticadas y costosas que se pueden encontrar en otros lugares.

Downloads

Download data is not yet available.

Author Biographies

Dafne Sarahia Guzmán-Hernández, CONAHCYT- Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Josa Hayra Villanueva-Reynoso, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Jorge Juárez-Gómez, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Mario Romero-Romo, Universidad Autónoma Metropolitana-Azcapotzalco

Departamento de Materiales

Manuel Palomar-Pardavé, Universidad Autónoma Metropolitana-Azcapotzalco

Departamento de Materiales

María Teresa Ramírez-Silva, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

References

Dobiáš, L.; Černá, M.; Rössner, P.; Šrám, R. Mutat. Res. 1994, 317, 177.

Gómez, M. J.; Petrović, M.; Fernández-Alba, A. R.; Barceló, D. J. Chromatogr. A. 2006, 1114, 224.

Celik, A.; Aras Ates, N. Drug Chem. Toxical. 2006, 29, 85.

Bendesky, A.; Menéndez, D.; Ostrosky-Wegman, P. Rev. Mutat. Res. 2022, 511, 133.

FARAD, 2010. US Food and Drug Administration.

CR 37/210. Commission Regulation (EU) No 37/210 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.

CRL, 2007. Guidance Paper – CRLs view on state of the art analytical methods for the national residue plans for control of residues, available from the EU CRLs for veterinary drug residue analysis.

Guzman-Hernández, D. S.; Cid-Ceron, M. M.; Romero-Romo, M.; Ramírez- Silva, M. T.; Paez-Hernández, M. E.; Corona-Avendaño, S.; PalomarPardave, M. RSC Adv. 2017, 7, 40401.

Mukerjee, P.; Mysels, K.J. in: Critical micelle concentrations of aqueous surfactant systems, National Standard reference data system, North Carolina, 1971.

Deroco, P. B.; Vicentini, F. C.; Oliveira, G. G.; Rocha-Filho, R. C.; Fatibello-Filho, O. J. Electroanal. Chem. 2014, 719, 19.

Martínez, R.; Ramírez, M. T.; González, I. Electroanalysis. 1998, 10, 336.

Ramírez, M. T.; Palomar, M. E.; González, I.; Rojas-Hernández A. Electroanalysis. 1995, 7, 184.

Rojas-Hernández, A.; Ramirez, M. T.; Ibañez, J. G.; Gonzalez, I. J. Electrochem. Soc. 1991, 138, 36.

Rojas-Hernández, A.; Ramírez, M. T.; Ibañez, J. G.; González. I. Anal. Chim. Acta. 1991, 246, 435.

Rojas-Hernández, A.; Ramírez, M. T.; González, I.; Ibañez, J. G. Anal. Chim. Acta. 1992, 259, 95.

Rojas-Hernández, A.; Ramírez, M. T.; González, I. Anal. Chim. Acta. 1993, 278, 335.

Bard, A.; Allen, J.; Larry, R. in: Electrochemical methods: fundamentals and applications, John Wiley & Sons, Texas Austin, 2022, 127-305.

Edward, D. I. Biochem Pharmacol. 1986, 35, 53.

Gosser Jr., D.K. in: Cyclic Voltammetry Simulation and Analysis of Reaction Mechanisms, VCH Publishers, Inc., Weinheim, 1993.

Corona-Avendañó, S.; Alarcón-Ángeles, G.; Ramírez-Silva, M.T.; Rosquete-Pina, G.; Romero-Romo, M.; Palomar-Pardavé, M. J. Electroanal. Chem. 2007, 609, 17.

Corona-Avendañó, S.; Ramírez-Silva, M. T.; Romero-Romo, M.; Rojas-Hernández, A.; Palomar-Pardavé, M. Electrochim. Acta. 2013, 89, 854.

Palomar-Pardavé, M.; Corona-Avendañó, S.; Romero-Romo, M.; Alarcón-Ángeles, G.; Merkoçi, A.; Ramírez-Silva, M. T. J. Electroanal. Chem. 2014, 717, 103.

Ramírez-Silva, M. T.; Palomar-Pardavé, M.; Corona-Avendañó, S.; Romero-Romo, M.; Alarcón-Ángeles, G. Molecules. 2014, 19, 5952.

Swartz, M. E.; Krull., I. S. in: Analytical Method Development and Validation, Marcel Dekker, New York, 1997, 92.

Meenakshi, S.; Rama, R.; Pandian, K.; Gopinath, S.C.B. Microchem. J. 2021, 165, 106151.

Bartlett, P. N.; Ghoneim, E.; El-Hefnawy, G.; El-Hallag, I. Talanta. 2005, 66, 869.

Asadpour, K.; Majidi, M. R.; Najafi, P.; Norysaray, Z. JCCS. 2013, 60, 1253.

Miller, J.; Miller, J. in: Statistics and Chemometrics for Analytical Chemistry, Prentice Hall, 2002.

Downloads

Published

2025-01-01

Most read articles by the same author(s)