On the Quest for Understanding Hydrogen Bonding Effects and its Nature
DOI:
https://doi.org/10.29356/jmcs.v69i1.2296Keywords:
Hydrogen bonding, Electronic structure calculations, quantum chemistryAbstract
Hydrogen bonding is a prominent non-covalent interaction that influences significatively the properties of the matter in which it is present. In this work it is reviewed some of the contributions of the chemistry department at the Autonomous Metropolitan University-Iztapalapa, to the study of the hydrogen bonding phenomena. Also, it is presented a formula derivation to calculate the hydrogen bond cooperative effect in a linear chain applying the Hellmann-Feynman theorem. In this manner, it is corroborated that the hydrogen bonding cooperative effect in a linear chain arises solely from classical interactions among effective point dipoles.
Resumen. El enlace de hidrógeno es una prominente interacción no covalente que influye significativamente en las propiedades de la materia en la que está presente. En este trabajo se revisan algunos aportes del departamento de química de la Universidad Autónoma Metropolitana-Iztapalapa, al estudio de los puentes de hidrógeno. Además se presenta la derivación de una fórmula para calcular el efecto cooperativo de los puentes de hidrógeno aplicando el teorema de Hellmann-Feynman. De esta manera se corrobora que el efecto cooperativo en la energía de los puentes de hidrógeno surge únicamente de las interacciones clásicas entre dipolos efectivos.
Downloads
References
Latimer, W. M.; Rodebush, W. H. J. Am. Chem. Soc. 1920, 42, 1419-1433. DOI: https://doi.org/10.1021/ja01452a015.
Nochebuena, J.; Cuautli, C.; Ireta, J. Phys. Chem. Chem. Phys. 2017, 19, 15256-15263. DOI: https://doi.org/10.1039/C7CP01695F.
Pittner, J.; Hobza, P. Chem. Phys. Lett. 2004, 390, 496-499. DOI: https://doi.org/10.1016/j.cplett.2004.04.009.
Cremer, D. WIREs Comput. Mol. Sci. 2011, 1, 509–530. DOI: https://doi.org/10.1002/wcms.58.
Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B. P.; Dixon, D. A. J. Phys. Chem. A. 2001, 105, 4963–4968. DOI: https://doi.org/10.1021/jp003888m.
Perdew, J. P.; Burke, K.; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865-3868. DOI: https://doi.org/10.1103/PhysRevLett.77.3865.
Ireta, J.; Neugebauer, J.; Scheffler, M. J. Phys. Chem. A. 2004, 108, 5692-5698. DOI: https://doi.org/10.1021/jp0377073.
Nochebuena, J.; Ramírez, A.; Ireta, J. Int. J. Quantum Chem. 2015, 115, 1613-1620. DOI: https://doi.org/10.1002/qua.24993.
Tkatchenko, A.; Scheffler, M. Phys. Rev. Lett. 2009, 102, 073005. DOI: https://doi.org/10.1103/PhysRevLett.102.073005.
Bautista-Renedo, J.; Ireta, J. Phys. Chem. Chem. Phys. 2024, 26, 21468-21475. DOI: https://doi.org/10.1039/D4CP00907J.
Bautista-Renedo, J.; Reyes-Pérez, H.; Cuevas-Yáñez, E.; Barrera-Díaz, C.; González-Rivas, N.; Ireta, J. RSC Adv. 2019, 9, 5937-5941. DOI: https://doi.org/10.1039/C9RA00856J.
Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1637–1641. DOI: https://doi.org/10.1351/PAC-REC-10-01-02.
Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. J. Am. Chem. Soc. 2000, 122, 4750-4755. DOI: https://doi.org/10.1021/ja993600a.
Civiš, S.; Lamanec, M.; Špirko, V.; Kubišta, J.; Špet´ko, M.; Hobza, P. J. Am. Chem. Soc. 2023, 145, 8550-8559. DOI: https://doi.org/10.1021/jacs.3c00802.
Galano, A.; Alvarez-Idaboy, J. R.; Vivier-Bunge, A.; Theor. Chem. Acc. 2007, 118, 597-606. DOI: https://doi.org/10.1007/s00214-007-0353-z.
Galano, A.; Narciso-Lopez, M.; Francisco-Marquez, M. J. Phys. Chem. A. 2010, 114, 5796-5809. DOI: https://doi.org/10.1021/jp101157b.
Ireta, J.; Neugebauer, J.; Scheffler, M.; Rojo, A.; Galván, M.; J. Phys. Chem. B. 2003, 107, 1432-1437. DOI: https://doi.org/10.1021/jp026848m.
Ismer, L.; Ireta, J.; Neugebauer, J. J. Phys. Chem. B. 2008, 112, 4109-4112. DOI: https://doi.org/10.1021/jp077728n.
Tkatchenko, A., Rossi, M.; Blum, V.; Ireta, J.; Scheffler, M. Phys. Rev. Lett. 2011, 106, 118102. DOI: https://doi.org/10.1103/PhysRevLett.106.118102.
Ireta, J. Theor. Chem. Acc. 2016, 135, 220. DOI: https://doi.org/10.1007/s00214-016-1981-y.
Ireta, J. Int. J. Quantum Chem 2012, 112, 3612-3617. DOI: https://doi.org/10.1002/qua.24246.
Ireta, J. J. Chem. Theory Comput. 2011, 7, 2630-2637. DOI: https://doi.org/10.1021/ct2002144.
González-Díaz, N. E.; López-Rendón, R.; Ireta, J. J. Phys. Chem. C. 2019, 123, 2526−2532. DOI: https://doi.org/10.1021/acs.jpcc.8b10340.
Ireta, J.; Neugebauer, J.; Scheffler, M.; Rojo, A.; Galván, M. J. Am. Chem. Soc. 2005, 127, 17241-17244. DOI: https://doi.org/10.1021/ja053538j.
del Campo, J. M.; Ireta, J. Phys. Chem. Chem. Phys. 2021, 23, 11931-11936. DOI: https://doi.org/10.1039/d0cp06018f.
Ireta, J.; Aparicio, F.; Viniegra, M.; Galván, M. J. Phys. Chem. B. 2003, 107, 811-818 DOI: https://doi.org/10.1021/jp026852y.
Cuautli, C.; Valente, J. S.; Conesa, J. C.; Ganduglia-Pirovano, M. V.; Ireta, J. J. Phys. Chem. C. 2019, 123, 8777−8784. DOI: https://doi.org/10.1021/acs.jpcc.8b10935.
Castro, G.; Valente, J. S.; Galván, M.; Ireta, J. Phys. Chem. Chem. Phys. 2022, 24, 23507-23516. DOI: https://doi.org/10.1039/d2cp02704f.
Cuautli, C.; Ireta, J. J. Chem. Phys. 2015, 142, 094704. DOI: https://doi.org/10.1063/1.4913570.
Nieto-Malagón, G.; Cuautli, C.; Ireta, J. J. Phys. Chem. C. 2018, 122, 171−176. DOI: https://doi.org/10.1021/acs.jpcc.7b10384.
Santoyo-Flores, J. J.; Cedillo, A.; Bernal-Uruchurtu, M. I. Theor. Chem. Acc. 2013, 132, 1-7. DOI: https://doi.org/10.1007/s00214-012-1313-9.
Cruz‐Torres, A.; Romero‐Martínez, A.; Galano, A. Chem. Phys. Chem. 2008, 9, 1630-1635. DOI: https://doi.org/10.1002/cphc.200800241.
Galano, A.; Alvarez‐Idaboy, J. R.; Ruiz‐Santoyo, M. A.; Vivier‐Bunge, A. Chem. Phys. Chem. 2004, 5,1379-1388. DOI: https://doi.org/10.1002/cphc.200400127.
Galano, A.; Alvarez-Idaboy, J. R.; Ruiz-Santoyo, M. E.; Vivier-Bunge, A. J. Phys. Chem. A. 2005, 109, 169-180. DOI: https://doi.org/10.1021/jp047490s.
Galano, A.; Alvarez‐Idaboy, J. R.; Ruiz‐Santoyo, M. A.; Vivier Bunge, A. Chem. Phys. Chem. 2004, 5, 1379-1388. DOI: https://doi.org/10.1002/cphc.200400127.
Zavala-Oseguera, C.; Alvarez-Idaboy, J. R.; Merino, G.; Galano, A. J. Phys. Chem. A. 2009, 113, 13913-13920. DOI: https://doi.org/10.1021/jp906144d.
Cedillo, A.; Kvedaravičiūtė, S.; Aidas, K. Theor. Chem. Acc. 2020, 139, 52. DOI: https://doi.org/10.1007/s00214-020-2558-3.
González-Rivas, N.; Cedillo, A. Comput. Theor. Chem. 2012, 994, 47-53. DOI: https://doi.org/10.1016/j.comptc.2012.06.012.
Cedillo, A.; Torrent, M.; Cortona, P. J. Phys.: Condens. Matter. 2016, 28, 185401. DOI: https://doi.org/10.1088/0953-8984/28/18/185401.
Clark, T.; Murray, J. S.; Politzer, P. Phys. Chem. Chem. Phys. 2018, 20, 30076-30082. DOI: https://doi.org/10.1039/C8CP06786D.
van der Lubbe, S. C. C.; Fonseca Gerra, C. Chem. Asian J. 2019, 14, 2760-2769. DOI: https://doi.org/10.1002/asia.201900717.
Allen, P. B. J. Chem. Phys. 2004, 120, 2951-2962. DOI: https://doi.org/10.1063/1.1630029.
Feynman, R. P. Phys. Rev. 1939, 56, 340-343. DOI: https://doi.org/10.1103/PhysRev.56.340.
Salem, L.; Wilson, E. B. Jr. J. Chem. Phys. 1962, 36, 3421-3427. DOI: https://doi.org/10.1063/1.1732475.
Hirschfelder, J. O.; Eliason, M. A. J. Chem. Phys. 1967, 47, 1164-1169. DOI: https://doi.org/10.1063/1.1712002.
Bader, R. F. W.; Chandra, A. K. Can. J. Chem. 1968, 46, 953-966. DOI: https://doi.org/10.1139/v68-157.
Hunt, K. L. C. J. Chem. Phys. 1990, 92, 1180-1187 DOI: https://doi.org/10.1063/1.458126.
Politzer, P.; Murray, J. S. J. Mol. Model. 2018, 24, 266. DOI: https://doi.org/10.1007/s00894-018-3784-7.
Berlin, T. J. Chem. Phys. 1951, 19, 208-213. DOI: https://doi.org/10.1063/1.1748161.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Joel Ireta, Boris Gutiérrez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.