Kinetic Modelling of Anisole Hydrodeoxygenation Using Aromatic-Selective Ru/TiO₂ Catalyst
DOI:
https://doi.org/10.29356/jmcs.v69i1.2290Keywords:
Kinetic modeling, hydrodeoxygenation, anisole, demethoxylation, demethylation, Ru, TiO₂Abstract
A Langmuir-Hinshelwood kinetic model is proposed to describe the anisole hydrodeoxygenation over a Ru/TiO2 catalyst in a continuous fixed-bed reactor. Key operating parameters, such as pressure, temperature, and weight hourly space velocity, were studied to ensure operation within the kinetic regime. The proposed kinetic model was successfully validated, and two adjacent catalytic sites were considered: one dedicated to the dissociative adsorption of hydrogen and the other to the adsorption and reaction of anisole and its reaction products. The model demonstrated a good fit with the experimental data, revealing a preference for the demethoxylation pathway leading to benzene formation over the demethylation pathway, which favors phenol formation. Characterization of the Ru/TiO2 catalyst using XRD, TPR-H2, TPD-NH3, and XPS revealed the presence of highly dispersed Ru particles and oxophilic sites, including both acidic sites and oxygen vacancies, validating the two-site model. The kinetic parameters indicated that the conversion of cyclohexanol to cyclohexane was the fastest reaction step, and the demethoxylation pathway was favored over the demethylation on the Ru/TiO2 catalyst.
Resumen. Se propone un modelo cinético Langmuir-Hinshelwood para describir la reacción de hidrodesoxigenación de anisol utilizando un catalizador Ru/TiO2 en un reactor de flujo continuo de lecho fijo. Se evaluaron inicialmente las condiciones de operación, como la presión, temperatura y velocidad espacial, con el fin de asegurar que el sistema opere dentro del régimen cinético. El modelo considera la presencia de dos sitios catalíticos adyacentes: uno destinado a la adsorción disociativa del hidrógeno y otro para la adsorción y reacción tanto de anisol como de sus productos de reacción. El modelo mostró un buen ajuste con los datos experimentales, indicando una ruta preferencial hacia la desmetoxilación, que produce benceno, frente a la desmetilación, que favorece la formación de fenol. La caracterización del catalizador Ru/TiO2 mediante técnicas de XRD, TPR-H2, TPD-NH3 y XPS reveló la presencia de partículas de Ru0 altamente dispersas y sitios oxofílicos superficiales, incluidos sitios ácidos y vacantes de oxígeno, lo que valida el uso del modelo de dos sitios propuesto. Los parámetros cinéticos indicaron que la conversión de ciclohexanol a ciclohexano es el paso de reacción más rápido, y se favoreció la ruta de desmetoxilación sobre la desmetilación en presencia del catalizador Ru/TiO2.
Downloads
References
Lange, J. P. Biofuels Bioprod. Biorefin. 2007, 1, 39-48. DOI: https://doi.org/10.1002/bbb.7. DOI: https://doi.org/10.1002/bbb.7
Choudhary, T. V.; Phillips, C. B. Appl. Catal., A 2011, 397, 1-12. DOI: https://doi.org/10.1016/j.apcata.2011.02.025. DOI: https://doi.org/10.1016/j.apcata.2011.02.025
Furimsky, E. Catal. Today 2013, 217, 13-56. DOI: https://doi.org/10.1016/j.cattod.2012.11.008. DOI: https://doi.org/10.1016/j.cattod.2012.11.008
Furimsky, E. Appl. Catal., A 2000, 199, 147-190. DOI: https://doi.org/10.1016/s0926-860x(99)00555-4. DOI: https://doi.org/10.1016/S0926-860X(99)00555-4
McKendry, P. Bioresour. Technol. 2002, 83, 37-46. DOI: https://doi.org/10.1016/s0960-8524(01)00118-3. DOI: https://doi.org/10.1016/S0960-8524(01)00118-3
Bu, Q.; Lei, H.; Zacher, A. H.; Wang, L.; Ren, S.; Liang, J.; Wei, Y.; Liu, Y.; Tang, J.; Zhang, Q.; Ruan, R. Bioresour. Technol. 2012, 124, 470-7. DOI: https://doi.org/10.1016/j.biortech.2012.08.089. DOI: https://doi.org/10.1016/j.biortech.2012.08.089
Elliott, D. C. Energy Fuels 2007, 21, 1792-1815. DOI: https://doi.org/10.1021/ef070044u. DOI: https://doi.org/10.1021/ef070044u
Wang, H.; Male, J.; Wang, Y. ACS Catal. 2013, 3, 1047-1070. DOI: https://doi.org/10.1021/cs400069z. DOI: https://doi.org/10.1021/cs400069z
Badawi, M.; Paul, J. F.; Cristol, S.; Payen, E.; Romero, Y.; Richard, F.; Brunet, S.; Lambert, D.; Portier, X.; Popov, A.; Kondratieva, E.; Goupil, J. M.; El Fallah, J.; Gilson, J. P.; Mariey, L.; Travert, A.; Maugé, F. J. Catal. 2011, 282, 155-164. DOI: https://doi.org/10.1016/j.jcat.2011.06.006. DOI: https://doi.org/10.1016/j.jcat.2011.06.006
Weigold, H. Fuel 1982, 61, 1021-1026. DOI: https://doi.org/10.1016/0016-2361(82)90104-1. DOI: https://doi.org/10.1016/0016-2361(82)90104-1
Odebunmi, E. J. Catal. 1983, 80, 56-64. DOI: https://doi.org/10.1016/0021-9517(83)90229-4. DOI: https://doi.org/10.1016/0021-9517(83)90229-4
Wandas, R.; Surygala, J.; Śliwka, E. Fuel 1996, 75, 687-694. DOI: https://doi.org/10.1016/0016-2361(96)00011-7. DOI: https://doi.org/10.1016/0016-2361(96)00011-7
Valdés-Martínez, O. U.; Suárez-Toriello, V. A.; Reyes, J. A. D. L.; Pawelec, B.; Fierro, J. L. G. Catal. Today 2017, 296, 219-227. DOI: https://doi.org/10.1016/j.cattod.2017.04.007. DOI: https://doi.org/10.1016/j.cattod.2017.04.007
Sorensen, B.; Spazzafumo, G. in: Hydrogen and Fuel Cells. 2nd ed.; Elsevier Science: 2012; 501. DOI: https://doi.org/10.1016/c2009-0-63881-2. DOI: https://doi.org/10.1016/C2009-0-63881-2
Nie, L.; Resasco, D. E. J. Catal. 2014, 317, 22-29. DOI: https://doi.org/10.1016/j.jcat.2014.05.024. DOI: https://doi.org/10.1016/j.jcat.2014.05.024
Ballesteros-Plata, D.; Infantes-Molina, A.; Rodríguez-Cuadrado, M.; Rodríguez-Aguado, E.; Braos-García, P.; Rodríguez-Castellón, E. Appl. Catal., A 2017, 547, 86-95. DOI: https://doi.org/10.1016/j.apcata.2017.08.034. DOI: https://doi.org/10.1016/j.apcata.2017.08.034
Yang, F. F.; Liu, D.; Wang, H.; Liu, X.; Han, J. Y.; Ge, Q. F.; Zhu, X. L. J. Catal. 2017, 349, 84-97. DOI: https://doi.org/10.1016/j.jcat.2017.01.001. DOI: https://doi.org/10.1016/j.jcat.2017.01.001
Zhu, X.; Nie, L.; Lobban, L. L.; Mallinson, R. G.; Resasco, D. E. Energy Fuels 2014, 28, 4104-4111. DOI: https://doi.org/10.1021/ef500768r. DOI: https://doi.org/10.1021/ef500768r
Zhong, Z.; Li, J.; Jian, M.; Shu, R.; Tian, Z.; Wang, C.; Chen, Y.; Shi, N.; Wu, Y. Fuel 2023, 333. DOI: https://doi.org/10.1016/j.fuel.2022.126241. DOI: https://doi.org/10.1016/j.fuel.2022.126241
Newman, C.; Zhou, X.; Goundie, B.; Ghampson, I. T.; Pollock, R. A.; Ross, Z.; Wheeler, M. C.; Meulenberg, R. W.; Austin, R. N.; Frederick, B. G., Appl. Catal., A 2014, 477, 64-74. DOI: https://doi.org/10.1016/j.apcata.2014.02.030. DOI: https://doi.org/10.1016/j.apcata.2014.02.030
Shu, R.; Lin, B.; Zhang, J.; Wang, C.; Yang, Z.; Chen, Y. Fuel Process. Technol. 2019, 184, 12-18. DOI: https://doi.org/10.1016/j.fuproc.2018.11.004. DOI: https://doi.org/10.1016/j.fuproc.2018.11.004
Zhong, Z.; Luo, B.; Lin, C.; Yin, T.; Tian, Z.; Wang, C.; Chen, Y.; Wu, Y.; Shu, R. Fuel 2023, 340. DOI: https://doi.org/10.1016/j.fuel.2023.127567. DOI: https://doi.org/10.1016/j.fuel.2023.127567
Boonyasuwat, S.; Omotoso, T.; Resasco, D. E.; Crossley, S. P. Catal. Lett. 2013, 143, 783-791. DOI: https://doi.org/10.1007/s10562-013-1033-3. DOI: https://doi.org/10.1007/s10562-013-1033-3
Anex, R. P.; Aden, A.; Kazi, F. K.; Fortman, J.; Swanson, R. M.; Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Platon, A.; Kothandaraman, G.; Hsu, D. D.; Dutta, A. Fuel 2010, 89 (SUPPL. 1), S29-S35. DOI: https://doi.org/10.1016/j.fuel.2010.07.015. DOI: https://doi.org/10.1016/j.fuel.2010.07.015
25. Kim, H.; Yang, S.; Lim, Y. H.; Lee, J.; Ha, J.-M.; Kim, D. H. J. Catal. 2022, 410, 93-102. DOI: https://doi.org/10.1016/j.jcat.2022.04.017. DOI: https://doi.org/10.1016/j.jcat.2022.04.017
de Souza, P. M.; Rabelo-Neto, R. C.; Borges, L. E. P.; Jacobs, G.; Davis, B. H.; Graham, U. M.; Resasco, D. E.; Noronha, F. B. ACS Catal. 2015, 5, 7385-7398. DOI: https://doi.org/10.1021/acscatal.5b01501. DOI: https://doi.org/10.1021/acscatal.5b01501
Dinh Ngo, S.; Tuong Vi Tran, T.; Kongparakul, S.; Reubroycharoen, P.; Kidkhuntod, P.; Chanlek, N.; Wang, J.; Guan, G.; Samart, C. J Anal Appl Pyrolysis 2020, 145. DOI: https://doi.org/10.1016/j.jaap.2019.104745. DOI: https://doi.org/10.1016/j.jaap.2019.104745
Lee, W. S.; Wang, Z. S.; Wu, R. J.; Bhan, A. J. Catal. 2014, 319, 44-53. DOI: https://doi.org/10.1016/j.jcat.2014.07.025. DOI: https://doi.org/10.1016/j.jcat.2014.07.025
Berger, R. J.; Stitt, E. H.; Marin, G. B.; Kapteijn, F.; Moulijn, J. A. Cattech. 2001, 5, 36-60. DOI: https://doi.org/10.1023/a:1011928218694. DOI: https://doi.org/10.1023/A:1011928218694
Ghampson, I. T.; Canales, R.; Escalona, N. Appl. Catal., A 2018, 549, 225-236. DOI: https://doi.org/10.1016/j.apcata.2017.10.009. DOI: https://doi.org/10.1016/j.apcata.2017.10.009
Li, Y.; Fu, J.; Chen, B., RSC Adv. 2017, 7, 15272-15277. DOI: https://doi.org/10.1039/c7ra00989e. DOI: https://doi.org/10.1039/C7RA00989E
Phan, T. N.; Ko, C. H. Catal. Today 2018, 303, 219-226. DOI: https://doi.org/10.1016/j.cattod.2017.08.025. DOI: https://doi.org/10.1016/j.cattod.2017.08.025
Leiva, K.; Sepulveda, C.; García, R.; Laurenti, D.; Vrinat, M.; Geantet, C.; Escalona, N. Appl. Catal., A 2015, 505, 302-308. DOI: https://doi.org/10.1016/j.apcata.2015.08.010. DOI: https://doi.org/10.1016/j.apcata.2015.08.010
Sitthisa, S.; Sooknoi, T.; Ma, Y. G.; Balbuena, P. B.; Resasco, D. E. J. Catal. 2011, 277, 1-13. DOI: https://doi.org/10.1016/j.jcat.2010.10.005. DOI: https://doi.org/10.1016/j.jcat.2010.10.005
Kunz, L.; Maier, L.; Tischer, S.; Deutschmann, O. in: Modeling and Simulation of Heterogeneous Catalytic Reactions, Deutschmann, O., Ed. 2011; 113-148. DOI: https://doi.org/10.1002/9783527639878.ch4. DOI: https://doi.org/10.1002/9783527639878.ch4
Valdés-Martínez, O. U.; Díaz de León, J. N.; Santolalla, C. E.; Talavera-López, A.; Avila-Paredes, H.; de los Reyes, J. A. Ind. Eng. Chem. Res. 2021, 60, 18880-18890. DOI: https://doi.org/10.1021/acs.iecr.1c03058. DOI: https://doi.org/10.1021/acs.iecr.1c03058
Valdés-Martínez, O. U.; Santolalla-Vargas, C. E.; Santes, V.; de los Reyes, J. A.; Pawelec, B.; Fierro, J. L. G. Catal. Today 2019, 329, 149-155. DOI: https://doi.org/10.1016/j.cattod.2018.11.007. DOI: https://doi.org/10.1016/j.cattod.2018.11.007
Kato, T.; Usami, T.; Tsukada, T.; Shibata, Y.; Kodama, T. J. Nucl. Mater. 2016, 479, 123-129. DOI: https://doi.org/10.1016/j.jnucmat.2016.06.052. DOI: https://doi.org/10.1016/j.jnucmat.2016.06.052
Granados Fócil, A. A.; Granados Fócil, S.; Conde Sotelo, V. M.; Grimm, R. L.; González García, F.; Rojas Santiago, E.; Santolalla Vargas, C. E.; Vera Ramírez, M. A.; de los Reyes Heredia, J. A. Energy Technol. 2019, 7. DOI: https://doi.org/10.1002/ente.201801112. DOI: https://doi.org/10.1002/ente.201801112
Vannice, M. A. J. Catal. 1976, 44, 152-162. DOI: https://doi.org/10.1016/0021-9517(76)90384-5. DOI: https://doi.org/10.1016/0021-9517(76)90384-5
Wang, F.; Zhang, S.; Li, C.; Liu, J.; He, S.; Zhao, Y.; Yan, H.; Wei, M.; Evans, D. G.; Duan, X. RSC Adv. 2014, 4. DOI: https://doi.org/10.1039/c3ra47076h. DOI: https://doi.org/10.1039/c3ra47076h
Popov, A.; Kondratieva, E.; Goupil, J. M.; Mariey, L.; Bazin, P.; Gilson, J.-P.; Travert, A.; Maugé, F. J. Phys. Chem. C. 2010, 114, 15661-15670. DOI: https://doi.org/10.1021/jp101949j. DOI: https://doi.org/10.1021/jp101949j
Morgan, D. J. Surf. Interface Anal. 2015, 47, 1072-1079. DOI: https://doi.org/10.1002/sia.5852. DOI: https://doi.org/10.1002/sia.5852
Kumar, V. P.; Beltramini, J. N.; Priya, S. S.; Srikanth, A.; Bhanuchander, P.; Chary, K. V. R. Appl. Petrochem. Res. 2015, 6, 73-87. DOI: https://doi.org/10.1007/s13203-015-0136-8. DOI: https://doi.org/10.1007/s13203-015-0136-8
Phan, T. N.; Park, Y.-K.; Lee, I.-G.; Ko, C. H. Appl. Catal., A 2017, 544, 84-93. DOI: https://doi.org/10.1016/j.apcata.2017.06.029. DOI: https://doi.org/10.1016/j.apcata.2017.06.029
Robinson, A. M.; Hensley, J. E.; Medlin, J. W. ACS Catal. 2016, 6, 5026-5043. DOI: https://doi.org/10.1021/acscatal.6b00923. DOI: https://doi.org/10.1021/acscatal.6b00923
Bui, V. N.; Laurenti, D.; Delichère, P.; Geantet, C. Appl. Catal. B Environ. 2011, 101, 246-255. DOI: https://doi.org/10.1016/j.apcatb.2010.10.031. DOI: https://doi.org/10.1016/j.apcatb.2010.10.031
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Victor Martinez-Jimenez, Reyna Ríos-Escobedo, J. Gabriel Flores Aguilar, Cindy García-Mendoza, Julia Aguilar-Pliego, José Antonio de los Reyes, Victor Alejandro Suárez-Toriello
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.