Effect of the Linker and Substituents on the Ionic Conductivity of Borate Single-Ion Polymers for Lithium Batteries

Authors

  • Soline Vauthier University of the Basque Country UPV/EHU &Toyota Motor Europe Research and Development 1
  • Stéphane Cotte Toyota Motor Europe Research and Development 1
  • Laurent Castro Toyota Motor Europe Research and Development 1
  • Aurélie Guéguen Toyota Motor Europe Research and Development 1
  • Nerea Casado University of the Basque Country UPV/EHU & Basque Foundation for Science
  • David Mecerreyes University of the Basque Country UPV/EHU & Basque Foundation for Science
  • Gregorio Guzmán-Gonzalez University of the Basque Country UPV/EHU / Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v68i4.2273

Keywords:

Lithium-ion, Lithium-ion batteries, polymer electrolytes, ion transport, solid electrolyte

Abstract

Polymer electrolytes with high ionic conductivity are actively searched for their application as solid electrolytes in lithium batteries. Here, we show new borate single lithium-ion conducting polymers with high ionic conductivity and lithium transference number values. For this purpose, eight new methacrylic lithium borate polymers were synthesized and characterized with varying chemical compositions focusing on the linker between the polymer chain and the pendant borate ionic group and its substituents. The polymers with the optimum ethoxy linker and fluorinated pendant groups show a low Tg value and the highest ionic conductivity value of 1.29×10-4 S.cm-1 at 60 °C. This value is among the highest ionic conductivity reported for a single lithium-ion conducting homopolymer. These polymers show a high lithium transference number (between 0.88 and 0.96) and electrochemical stability close to 4.2 V vs Li+/Li, making them promising candidates for application as solid electrolytes in lithium batteries.

 

Resumen. Se buscan activamente electrolitos poliméricos con alta conductividad iónica para su aplicación como electrolitos sólidos en baterías de litio. Aquí, mostramos nuevos polímeros conductores de iones de litio de borato simples con valores muy altos de conductividad iónica y número de transferencia de litio. Para ello, se sintetizaron y caracterizaron ocho nuevos polímeros metacrílicos de borato de litio con composiciones químicas variables centradas en el enlazador entre la cadena polimérica y el grupo iónico borato colgante y sus sustituyentes. Los polímeros con el enlazador etoxi óptimo y los grupos colgantes fluorados muestran un valor Tg bajo y un valor superior de conductividad iónica 1,29×10-4 Scm-1 a 60 °C. Este valor es uno de los más altos de conductividad iónica a 60 °C. Este valor es uno de los valores más altos de conductividad iónica a 60 °C. Este valor es uno de los más altos valores de conductividad iónica registrados para un solo homopolímero conductor de iones de litio. Estos polímeros muestran un elevado número de transferencia de litio (entre 0.88 y 0.96), y una estabilidad electroquímica cercana a 4.2 V vs Li+/Li que los convierten en candidatos prometedores para su aplicación como electrolitos sólidos en baterías de litio.

Downloads

Download data is not yet available.

Author Biographies

Soline Vauthier, University of the Basque Country UPV/EHU &Toyota Motor Europe Research and Development 1

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain

Stéphane Cotte, Toyota Motor Europe Research and Development 1

Toyota Motor Europe Research and Development 1, Advanced Material Research Battery and Fuel Cell, Hoge Wei 33, Zaventem B-1930, Belgium.

Laurent Castro, Toyota Motor Europe Research and Development 1

Toyota Motor Europe Research and Development 1, Advanced Material Research Battery and Fuel Cell, Hoge Wei 33, Zaventem B-1930, Belgium.

Aurélie Guéguen, Toyota Motor Europe Research and Development 1

Toyota Motor Europe Research and Development 1, Advanced Material Research Battery and Fuel Cell, Hoge Wei 33, Zaventem B-1930, Belgium.

Nerea Casado, University of the Basque Country UPV/EHU & Basque Foundation for Science

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain.

IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.

 

David Mecerreyes, University of the Basque Country UPV/EHU & Basque Foundation for Science

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain.

IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.

Gregorio Guzmán-Gonzalez, University of the Basque Country UPV/EHU / Universidad Autónoma Metropolitana-Iztapalapa

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain.

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México City, México.

References

Nurul, S.; Mohd, A.; Tajuddin, N. A. International Journal of Electrochemical Science. 2021, 16, 1–15. DOI: https://doi.org/10.20964/2021.10.53.

Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem Soc Rev. 2017, 3, 797–815. DOI: https://doi.org/10.1039/c6cs00491a.

Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. F. Adv Energy Mater. 2021, 14, 1–18. DOI: https://doi.org/10.1002/aenm.202003836.

Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Prog. Polym. Sci. 2018, 81, 114–143. DOI: https://doi.org/10.1016/j.progpolymsci.2017.12.004.

Xue, Z.; He, D.; Xie, X. J. Mater. Chem. A Mater. 2015, 38, 19218–19253. DOI: https://doi.org/10.1039/c5ta03471j.

Suo, L.; Zheng, F.; Hu, Y. S.; Chen, L. Chinese Physics B. 2015, 1, 0–4. DOI: https://doi.org/10.1088/1674-1056/25/1/016101.

Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Polymers. 2018, 4, 1–13. DOI: https://doi.org/10.3390/polym10111237.

Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature. 1998, 394, 456–458. DOI: https://doi.org/10.1038/28818.

Guzmán-González, G.; Avila-Paredes, H. J.; Santos-Mendoza, I. Journal of Solid-State Electrochemistry. 2023. DOI: https://doi.org/10.1007/s10008-023-05563-1.

Porcarelli, L.; Shaplov, A. S.; Bella, F.; Nair, J. R.; Mecerreyes, D.; Gerbaldi, C. ACS Energy Lett. 2016, 4, 678–682. DOI: https://doi.org/10.1021/acsenergylett.6b00216.

Shan, X.; Zhao, S.; Ma, M.; Pan, Y.; Xiao, Z.; Li, B.; Sokolov, A. P.; Tian, M.; Yang, H.; Cao, P. F. ACS Appl. Mater Interfaces. 2022, 14, 56110−56119. https://doi.org/10.1021/acsami.2c17547.

Guzman Gonzalez, G. J. Mex. Chem. Soc. 2023, 4, 602–620. DOI: https://doi.org/10.29356/jmcs.v67i4.1959.

Porcarelli, L.; Vlasov, P. S.; Ponkratov, D. O.; Lozinskaya, E. I.; Antonov, D. Y.; Nair, J. R.; Gerbaldi, C.; Mecerreyes, D.; Shaplov, A. S. Eur. Polym. J. 2018, 107, 218–228. DOI: https://doi.org/10.1016/j.eurpolymj.2018.08.014.

Zygadła-Monikowska, E.; Florjańczyk, Z.; Ostrowska, J.; Bołtromiuk, P.; Frydrych, J.; Sadurski, W.; Langwald, N. Electrochim. Acta. 2011, 1, 66–73. DOI: https://doi.org/10.1016/j.electacta.2011.07.120.

Guzmán‐González, G.; Alvarez‐Tirado, M.; Olmedo‐Martínez, J. L.; Picchio, M. L.; Casado, N.; Forsyth, M.; Mecerreyes, D. Adv. Energy Mater. 2023, 1, 2202974. DOI: https://doi.org/10.1002/aenm.202202974.

Porcarelli, L.; Shaplov, A. S.; Salsamendi, M.; Nair, J. R.; Vygodskii, Y. S.; Mecerreyes, D.; Gerbaldi, C. ACS Appl Mater Interfaces. 2016, 16, 10350–10359. DOI: https://doi.org/10.1021/acsami.6b01973.

Shaplov, A. S.; Vlasov, P. S.; Armand, M.; Lozinskaya, E. I.; Ponkratov, D. O.; Malyshkina, I. A.; Vidal, F.; Okatova, O. V.; Pavlov, G. M.; Wandrey, C.; Godovikov, I. A.; Vygodskii, Y. S. Polym Chem. 2011, 11, 2609–2618. DOI: https://doi.org/10.1039/c1py00282a.

Meziane, R.; Bonnet, J. P.; Courty, M.; Djellab, K.; Armand, M. Electrochim Acta. 2011, 1, 14–19. DOI: https://doi.org/10.1016/j.electacta.2011.03.074.

Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y. S.; Li, H.; Huang, X.; Chen, L.; Armand, M.; Zhou, Z. Angewandte Chemie - International Edition. 2016, 7, 2521–2525. DOI: https://doi.org/10.1002/anie.201509299.

Zhu, Y. S.; Wang, X. J.; Hou, Y. Y.; Gao, X. W.; Liu, L. L.; Wu, Y. P.; Shimizu, M. Electrochim Acta. 2013, 87, 113–118. DOI: https://doi.org/10.1016/j.electacta.2012.08.114.

Ponkratov, D. O.; Lozinskaya, E. I.; Shaplov, A. S.; Khanin, D. A.; Afanasyev, E. S.; Takazova, R. U.; Vygodskii, Y. S. Doklady Chemistry. 2022, 2, 29–36. DOI: https://doi.org/10.1134/S0012500822020021.

Rolland, J.; Brassinne, J.; Bourgeois, J. P.; Poggi, E.; Vlad, A.; Gohy, J. F. J Mater Chem. A Mater. 2014, 30, 11839–11846. DOI: https://doi.org/10.1039/c4ta02327g.

Rolland, J.; Poggi, E.; Vlad, A.; Gohy, J. F. Polymer. 2015, 68, 344–352. DOI: https://doi.org/10.1016/j.polymer.2015.04.056.

Olmedo-Martínez, J. L.; Porcarelli, L.; Alegría, Á.; Mecerreyes, D.; Müller, A. J. Macromolecules. 2020, 11, 4442–4453. DOI: https://doi.org/10.1021/acs.macromol.0c00703.

Meabe, L.; Goujon, N.; Li, C.; Armand, M.; Forsyth, M.; Mecerreyes, D. Batter Supercaps. 2020, 1, 68–75. DOI: https://doi.org/10.1002/batt.201900119.

Guzmán-González, G.; Vauthier, S.; Alvarez-Tirado, M.; Cotte, S.; Castro, L.; Guéguen, A.; Casado, N.; Mecerreyes, D. Angewandte Chemie - International Edition. 2021, 7, 1–5. DOI: https://doi.org/10.1002/anie.202114024.

Zygadło-Monikowska, E.; Florjańczyk, Z.; Słuzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. J. Power Sources. 2010, 18, 6055–6061. DOI: https://doi.org/10.1016/j.jpowsour.2009.12.097.

Meabe, L.; Huynh, T. V.; Lago, N.; Sardon, H.; Li, C.; O’Dell, L. A.; Armand, M.; Forsyth, M.; Mecerreyes, D. Electrochim Acta. 2018, 264, 367–375. DOI: https://doi.org/10.1016/j.electacta.2018.01.101.

Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Journal of Solid-State Electrochemistry. 2001, 1, 8–15. DOI: https://doi.org/10.1007/s100080000190.

Menzinger, M.; Wolfgang, R. Angewandte Chemie International Edition in English. 1969, 6, 438–444. DOI: https://doi.org/10.1002/anie.196904381.

Soydan, A. M.; Bozkurt, A. Ionics. 2018, 5, 1399–1405. DOI: https://doi.org/10.1007/s11581-017-2286-4.

Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer. 1987, 13, 2324–2328. DOI: https://doi.org/10.1016/0032-3861(87)90394-6 .

Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Electrochim Acta, 2011, 11, 3926–3933. DOI: https://doi.org/10.1016/j.electacta.2011.02.025.

Strauss, E.; Menkin, S.; Golodnitsky, D. Journal of Solid State Electrochemistry. 2017, 7, 1879–1905. DOI: https://doi.org/10.1007/s10008-017-3638-8.

Hamaide, T.; Le Deore, C. Polymer. 1993, 5, 1038–1046. DOI: https://doi.org/10.1016/0032-3861(93)90227-2.

Zygadło-Monikowska, E.; Florjańczyk, Z.; Tomaszewska, A.; Pawlicka, M.; Langwald, N.; Kovarsky, R.; Mazor, H.; Golodnitsky, D.; Peled, E. Electrochim Acta. 2007, 4, 1481–1489. DOI: https://doi.org/10.1016/j.electacta.2007.02.046.

Guzmán-González, G.; Ávila-Paredes, H. J.; Rivera, E.; González, I. ACS Appl Mater Interfaces. 2018, 36, 30247–30256. DOI: https://doi.org/10.1021/acsami.8b02519.

Guzmán-González, G.; Ramos-Sánchez, G.; Camacho-Forero, L. E.; González, I. Journal of Physical Chemistry C. 2019, 29, 17686–17694. DOI: https://doi.org/10.1021/acs.jpcc.9b02945.

G. Guzmán, D. Nava, J. Vasquez-Arenas, J. Cardoso, J. A.-Ramirez. Solid State Ionics. 2019, 5, 55.

Nava, D. P.; Guzmán, G.; Vazquez-Arenas, J.; Cardoso, J.; Gomez, B.; Gonzalez, I. Solid State Ionic. 2016, 290, 98–107. DOI: https://doi.org/10.1016/j.ssi.2016.03.020.

Downloads

Published

2024-09-30

Most read articles by the same author(s)