Effect of the Linker and Substituents on the Ionic Conductivity of Borate Single-Ion Polymers for Lithium Batteries

Authors

  • Soline Vauthier University of the Basque Country UPV/EHU &Toyota Motor Europe Research and Development 1
  • Stéphane Cotte Toyota Motor Europe Research and Development 1
  • Laurent Castro Toyota Motor Europe Research and Development 1
  • Aurélie Guéguen Toyota Motor Europe Research and Development 1
  • Nerea Casado University of the Basque Country UPV/EHU & Basque Foundation for Science
  • David Mecerreyes University of the Basque Country UPV/EHU & Basque Foundation for Science
  • Gregorio Guzmán-Gonzalez University of the Basque Country UPV/EHU / Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v68i4.2273

Keywords:

Lithium-ion, Lithium-ion batteries, polymer electrolytes, ion transport, solid electrolyte

Abstract

Polymer electrolytes with high ionic conductivity are actively searched for their application as solid electrolytes in lithium batteries. Here, we show new borate single lithium-ion conducting polymers with high ionic conductivity and lithium transference number values. For this purpose, eight new methacrylic lithium borate polymers were synthesized and characterized with varying chemical compositions focusing on the linker between the polymer chain and the pendant borate ionic group and its substituents. The polymers with the optimum ethoxy linker and fluorinated pendant groups show a low Tg value and the highest ionic conductivity value of 1.29×10-4 S.cm-1 at 60 °C. This value is among the highest ionic conductivity reported for a single lithium-ion conducting homopolymer. These polymers show a high lithium transference number (between 0.88 and 0.96) and electrochemical stability close to 4.2 V vs Li+/Li, making them promising candidates for application as solid electrolytes in lithium batteries.

 

Resumen. Se buscan activamente electrolitos poliméricos con alta conductividad iónica para su aplicación como electrolitos sólidos en baterías de litio. Aquí, mostramos nuevos polímeros conductores de iones de litio de borato simples con valores muy altos de conductividad iónica y número de transferencia de litio. Para ello, se sintetizaron y caracterizaron ocho nuevos polímeros metacrílicos de borato de litio con composiciones químicas variables centradas en el enlazador entre la cadena polimérica y el grupo iónico borato colgante y sus sustituyentes. Los polímeros con el enlazador etoxi óptimo y los grupos colgantes fluorados muestran un valor Tg bajo y un valor superior de conductividad iónica 1,29×10-4 Scm-1 a 60 °C. Este valor es uno de los más altos de conductividad iónica a 60 °C. Este valor es uno de los valores más altos de conductividad iónica a 60 °C. Este valor es uno de los más altos valores de conductividad iónica registrados para un solo homopolímero conductor de iones de litio. Estos polímeros muestran un elevado número de transferencia de litio (entre 0.88 y 0.96), y una estabilidad electroquímica cercana a 4.2 V vs Li+/Li que los convierten en candidatos prometedores para su aplicación como electrolitos sólidos en baterías de litio.

Downloads

Download data is not yet available.

Author Biographies

Soline Vauthier, University of the Basque Country UPV/EHU &Toyota Motor Europe Research and Development 1

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain

Stéphane Cotte, Toyota Motor Europe Research and Development 1

Toyota Motor Europe Research and Development 1, Advanced Material Research Battery and Fuel Cell, Hoge Wei 33, Zaventem B-1930, Belgium.

Laurent Castro, Toyota Motor Europe Research and Development 1

Toyota Motor Europe Research and Development 1, Advanced Material Research Battery and Fuel Cell, Hoge Wei 33, Zaventem B-1930, Belgium.

Aurélie Guéguen, Toyota Motor Europe Research and Development 1

Toyota Motor Europe Research and Development 1, Advanced Material Research Battery and Fuel Cell, Hoge Wei 33, Zaventem B-1930, Belgium.

Nerea Casado, University of the Basque Country UPV/EHU & Basque Foundation for Science

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain.

IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.

 

David Mecerreyes, University of the Basque Country UPV/EHU & Basque Foundation for Science

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain.

IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.

Gregorio Guzmán-Gonzalez, University of the Basque Country UPV/EHU / Universidad Autónoma Metropolitana-Iztapalapa

POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 7, 20018 Donostia-San Sebastian, Spain.

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México City, México.

References

Nurul, S.; Mohd, A.; Tajuddin, N. A. International Journal of Electrochemical Science. 2021, 16, 1–15. DOI: https://doi.org/10.20964/2021.10.53. DOI: https://doi.org/10.20964/2021.10.53

Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Chem Soc Rev. 2017, 3, 797–815. DOI: https://doi.org/10.1039/c6cs00491a. DOI: https://doi.org/10.1039/C6CS00491A

Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. F. Adv Energy Mater. 2021, 14, 1–18. DOI: https://doi.org/10.1002/aenm.202003836. DOI: https://doi.org/10.1002/aenm.202003836

Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Prog. Polym. Sci. 2018, 81, 114–143. DOI: https://doi.org/10.1016/j.progpolymsci.2017.12.004. DOI: https://doi.org/10.1016/j.progpolymsci.2017.12.004

Xue, Z.; He, D.; Xie, X. J. Mater. Chem. A Mater. 2015, 38, 19218–19253. DOI: https://doi.org/10.1039/c5ta03471j. DOI: https://doi.org/10.1039/C5TA03471J

Suo, L.; Zheng, F.; Hu, Y. S.; Chen, L. Chinese Physics B. 2015, 1, 0–4. DOI: https://doi.org/10.1088/1674-1056/25/1/016101. DOI: https://doi.org/10.1088/1674-1056/25/1/016101

Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Polymers. 2018, 4, 1–13. DOI: https://doi.org/10.3390/polym10111237. DOI: https://doi.org/10.3390/polym10111237

Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature. 1998, 394, 456–458. DOI: https://doi.org/10.1038/28818. DOI: https://doi.org/10.1038/28818

Guzmán-González, G.; Avila-Paredes, H. J.; Santos-Mendoza, I. Journal of Solid-State Electrochemistry. 2023. DOI: https://doi.org/10.1007/s10008-023-05563-1. DOI: https://doi.org/10.1007/s10008-023-05563-1

Porcarelli, L.; Shaplov, A. S.; Bella, F.; Nair, J. R.; Mecerreyes, D.; Gerbaldi, C. ACS Energy Lett. 2016, 4, 678–682. DOI: https://doi.org/10.1021/acsenergylett.6b00216. DOI: https://doi.org/10.1021/acsenergylett.6b00216

Shan, X.; Zhao, S.; Ma, M.; Pan, Y.; Xiao, Z.; Li, B.; Sokolov, A. P.; Tian, M.; Yang, H.; Cao, P. F. ACS Appl. Mater Interfaces. 2022, 14, 56110−56119. https://doi.org/10.1021/acsami.2c17547. DOI: https://doi.org/10.1021/acsami.2c17547

Guzman Gonzalez, G. J. Mex. Chem. Soc. 2023, 4, 602–620. DOI: https://doi.org/10.29356/jmcs.v67i4.1959. DOI: https://doi.org/10.29356/jmcs.v67i4.1959

Porcarelli, L.; Vlasov, P. S.; Ponkratov, D. O.; Lozinskaya, E. I.; Antonov, D. Y.; Nair, J. R.; Gerbaldi, C.; Mecerreyes, D.; Shaplov, A. S. Eur. Polym. J. 2018, 107, 218–228. DOI: https://doi.org/10.1016/j.eurpolymj.2018.08.014. DOI: https://doi.org/10.1016/j.eurpolymj.2018.08.014

Zygadła-Monikowska, E.; Florjańczyk, Z.; Ostrowska, J.; Bołtromiuk, P.; Frydrych, J.; Sadurski, W.; Langwald, N. Electrochim. Acta. 2011, 1, 66–73. DOI: https://doi.org/10.1016/j.electacta.2011.07.120. DOI: https://doi.org/10.1016/j.electacta.2011.07.120

Guzmán‐González, G.; Alvarez‐Tirado, M.; Olmedo‐Martínez, J. L.; Picchio, M. L.; Casado, N.; Forsyth, M.; Mecerreyes, D. Adv. Energy Mater. 2023, 1, 2202974. DOI: https://doi.org/10.1002/aenm.202202974. DOI: https://doi.org/10.1002/aenm.202202974

Porcarelli, L.; Shaplov, A. S.; Salsamendi, M.; Nair, J. R.; Vygodskii, Y. S.; Mecerreyes, D.; Gerbaldi, C. ACS Appl Mater Interfaces. 2016, 16, 10350–10359. DOI: https://doi.org/10.1021/acsami.6b01973. DOI: https://doi.org/10.1021/acsami.6b01973

Shaplov, A. S.; Vlasov, P. S.; Armand, M.; Lozinskaya, E. I.; Ponkratov, D. O.; Malyshkina, I. A.; Vidal, F.; Okatova, O. V.; Pavlov, G. M.; Wandrey, C.; Godovikov, I. A.; Vygodskii, Y. S. Polym Chem. 2011, 11, 2609–2618. DOI: https://doi.org/10.1039/c1py00282a. DOI: https://doi.org/10.1039/c1py00282a

Meziane, R.; Bonnet, J. P.; Courty, M.; Djellab, K.; Armand, M. Electrochim Acta. 2011, 1, 14–19. DOI: https://doi.org/10.1016/j.electacta.2011.03.074. DOI: https://doi.org/10.1016/j.electacta.2011.03.074

Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y. S.; Li, H.; Huang, X.; Chen, L.; Armand, M.; Zhou, Z. Angewandte Chemie - International Edition. 2016, 7, 2521–2525. DOI: https://doi.org/10.1002/anie.201509299. DOI: https://doi.org/10.1002/anie.201509299

Zhu, Y. S.; Wang, X. J.; Hou, Y. Y.; Gao, X. W.; Liu, L. L.; Wu, Y. P.; Shimizu, M. Electrochim Acta. 2013, 87, 113–118. DOI: https://doi.org/10.1016/j.electacta.2012.08.114. DOI: https://doi.org/10.1016/j.electacta.2012.08.114

Ponkratov, D. O.; Lozinskaya, E. I.; Shaplov, A. S.; Khanin, D. A.; Afanasyev, E. S.; Takazova, R. U.; Vygodskii, Y. S. Doklady Chemistry. 2022, 2, 29–36. DOI: https://doi.org/10.1134/S0012500822020021. DOI: https://doi.org/10.1134/S0012500822020021

Rolland, J.; Brassinne, J.; Bourgeois, J. P.; Poggi, E.; Vlad, A.; Gohy, J. F. J Mater Chem. A Mater. 2014, 30, 11839–11846. DOI: https://doi.org/10.1039/c4ta02327g. DOI: https://doi.org/10.1039/C4TA02327G

Rolland, J.; Poggi, E.; Vlad, A.; Gohy, J. F. Polymer. 2015, 68, 344–352. DOI: https://doi.org/10.1016/j.polymer.2015.04.056. DOI: https://doi.org/10.1016/j.polymer.2015.04.056

Olmedo-Martínez, J. L.; Porcarelli, L.; Alegría, Á.; Mecerreyes, D.; Müller, A. J. Macromolecules. 2020, 11, 4442–4453. DOI: https://doi.org/10.1021/acs.macromol.0c00703. DOI: https://doi.org/10.1021/acs.macromol.0c00703

Meabe, L.; Goujon, N.; Li, C.; Armand, M.; Forsyth, M.; Mecerreyes, D. Batter Supercaps. 2020, 1, 68–75. DOI: https://doi.org/10.1002/batt.201900119. DOI: https://doi.org/10.1002/batt.201900119

Guzmán-González, G.; Vauthier, S.; Alvarez-Tirado, M.; Cotte, S.; Castro, L.; Guéguen, A.; Casado, N.; Mecerreyes, D. Angewandte Chemie - International Edition. 2021, 7, 1–5. DOI: https://doi.org/10.1002/anie.202114024. DOI: https://doi.org/10.1002/anie.202114024

Zygadło-Monikowska, E.; Florjańczyk, Z.; Słuzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. J. Power Sources. 2010, 18, 6055–6061. DOI: https://doi.org/10.1016/j.jpowsour.2009.12.097. DOI: https://doi.org/10.1016/j.jpowsour.2009.12.097

Meabe, L.; Huynh, T. V.; Lago, N.; Sardon, H.; Li, C.; O’Dell, L. A.; Armand, M.; Forsyth, M.; Mecerreyes, D. Electrochim Acta. 2018, 264, 367–375. DOI: https://doi.org/10.1016/j.electacta.2018.01.101. DOI: https://doi.org/10.1016/j.electacta.2018.01.101

Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Journal of Solid-State Electrochemistry. 2001, 1, 8–15. DOI: https://doi.org/10.1007/s100080000190. DOI: https://doi.org/10.1007/s100080000190

Menzinger, M.; Wolfgang, R. Angewandte Chemie International Edition in English. 1969, 6, 438–444. DOI: https://doi.org/10.1002/anie.196904381. DOI: https://doi.org/10.1002/anie.196904381

Soydan, A. M.; Bozkurt, A. Ionics. 2018, 5, 1399–1405. DOI: https://doi.org/10.1007/s11581-017-2286-4. DOI: https://doi.org/10.1007/s11581-017-2286-4

Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer. 1987, 13, 2324–2328. DOI: https://doi.org/10.1016/0032-3861(87)90394-6 . DOI: https://doi.org/10.1016/0032-3861(87)90394-6

Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Electrochim Acta, 2011, 11, 3926–3933. DOI: https://doi.org/10.1016/j.electacta.2011.02.025. DOI: https://doi.org/10.1016/j.electacta.2011.02.025

Strauss, E.; Menkin, S.; Golodnitsky, D. Journal of Solid State Electrochemistry. 2017, 7, 1879–1905. DOI: https://doi.org/10.1007/s10008-017-3638-8. DOI: https://doi.org/10.1007/s10008-017-3638-8

Hamaide, T.; Le Deore, C. Polymer. 1993, 5, 1038–1046. DOI: https://doi.org/10.1016/0032-3861(93)90227-2. DOI: https://doi.org/10.1016/0032-3861(93)90227-2

Zygadło-Monikowska, E.; Florjańczyk, Z.; Tomaszewska, A.; Pawlicka, M.; Langwald, N.; Kovarsky, R.; Mazor, H.; Golodnitsky, D.; Peled, E. Electrochim Acta. 2007, 4, 1481–1489. DOI: https://doi.org/10.1016/j.electacta.2007.02.046. DOI: https://doi.org/10.1016/j.electacta.2007.02.046

Guzmán-González, G.; Ávila-Paredes, H. J.; Rivera, E.; González, I. ACS Appl Mater Interfaces. 2018, 36, 30247–30256. DOI: https://doi.org/10.1021/acsami.8b02519. DOI: https://doi.org/10.1021/acsami.8b02519

Guzmán-González, G.; Ramos-Sánchez, G.; Camacho-Forero, L. E.; González, I. Journal of Physical Chemistry C. 2019, 29, 17686–17694. DOI: https://doi.org/10.1021/acs.jpcc.9b02945. DOI: https://doi.org/10.1021/acs.jpcc.9b02945

G. Guzmán, D. Nava, J. Vasquez-Arenas, J. Cardoso, J. A.-Ramirez. Solid State Ionics. 2019, 5, 55.

Nava, D. P.; Guzmán, G.; Vazquez-Arenas, J.; Cardoso, J.; Gomez, B.; Gonzalez, I. Solid State Ionic. 2016, 290, 98–107. DOI: https://doi.org/10.1016/j.ssi.2016.03.020. DOI: https://doi.org/10.1016/j.ssi.2016.03.020

Downloads

Additional Files

Published

2024-09-30

Most read articles by the same author(s)