Contributions from UAM-Iztapalapa to the Study of Confined Atoms and Molecules

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i4.2266

Keywords:

Confined systems, systems under high pressure, electronic structure under extreme conditions

Abstract

The study of confined quantum systems has been a subject of fundamental interest of research at the Universidad Autónoma Metropolitana (UAM) for over 30 years. This summary highlights the contributions of the present authors from UAM in this field considering various quantum systems under different confinement conditions. The paper is divided into two sections: one focusing on atoms and molecules confined by closed and open hard walls, and the other on systems confined by closed and open soft walls. As UAM celebrates its 50th anniversary, it is a timely moment to reflect on the development of collective efforts of the Chemistry and Physics departments in contributing to knowledge in this intriguing and interesting field.

 

Resumen. El estudio de sistemas cuánticos confinados ha sido objeto de fundamental interés en la Universidad Autónoma Metropolitana (UAM) sobre 30 años. Este resumen resalta las contribuciones de la autora y autores de la UAM en este campo considerando varios sistemas cuánticos bajo diferentes condiciones de confinamiento. El artículo está dividido en dos secciones: una enfocándose en átomos y moléculas confinadas por paredes duras cerradas y abiertas, y la otra en sistemas confinados por paredes suaves cerradas y abiertas. Como la UAM celebra su 50 aniversario, es un buen momento para mostrar el desarrollo de esfuerzos colectivos de los departamentos de química y física en la contribución del conocimiento en este interesante e intrigante campo.

Downloads

Download data is not yet available.

Author Biographies

Norberto Aquino, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Física, División de Ciencias Básicas e Ingeniería

Salvador Cruz, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Física, División de Ciencias Básicas e Ingeniería

Jorge Garza, Universidad Autonoma Metropolitana-Iztapalapa

Departamento de Química, División de Ciencias Básicas e Ingeniería

Rubicelia Vargas, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química, División de Ciencias Básicas e Ingeniería

References

Wigner, E.; Seitz, F. Constitution of metallic sodium. Phys. Rev. 1933, 43, 804–810. DOI: https://doi.org/10.1103/PhysRev.43.804.

Wigner, E.; Seitz, F. Constitution of metallic sodium II. Phys. Rev. 1934, 46, 509–534. DOI: https://doi.org/10.1103/PhysRev.46.509.

Michels, A.; De Boer, J.; Bijl, A. Physica 1937, 4, 981. DOI: https://doi.org/10.1103/PhysRev.46.509.

Sommerfeld, A.; Welker, H. Ann. Phys. 1938, 32, 56–65. DOI: https://doi.org/10.1002/andp.19384240109.

Bates, D. R.; Bederson, B. Adv. At. Mol. Opt. Phys. 1978, 13, 1-55. DOI: https://doi.org/10.1016/S0065-2199(08)60054-8.

Jaskólski, W. Confined many-electron systems. Phys. Rep. 1996, 271, 1–66. DOI: https://doi.org/10.1016/0370-1573(95)00070-4.

Sabin, J. R.; E. Brändas, E.; Cruz, S. A. Adv. Quantum Chem. Vols. 57 and 58; Academic Press: Amsterdam, 2009.

Sen, K. D. Electronic structure of quantum confined atoms and molecules; Springer International Publishing, 2014.

Ley-Koo, E. Rev. Mex. Fis. 2018, 64, 326–363. DOI: https://doi.org/10.31349/RevMexFis.64.326.

Ley-Koo, E.; Rubinstein, S. J. Chem. Phys. 1979, 71, 351–357. DOI: https://doi.org/10.1063/1.438077.

Marin, J. L.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys. 1991, 24, 2899. DOI: https://doi.org/10.1088/0953-4075/24/13/006.

Aquino, N. Int. J. Quantum Chem. 1995, 54, 107–115. DOI: https://doi.org/10.1002/qua.560540206.

Marin, J. L.; Cruz, S. A. Am. J. Phys. 1991, 59, 931–935. DOI: https://doi.org/10.1119/1.16674.

Aquino, N. Adv. Quantum Chem. 2009, 57, 123–171. DOI: https://doi.org/10.1016/S0065-3276(09)00608-X.

Aquino, N.; Campoy, G.; Montgomery, H. E., Jr. Int. J. Quantum Chem. 2007, 107, 1548–1558. DOI: https://doi.org/10.1002/qua.21313.

Garza, J.; Vargas, R.; Sen, K. D., in Chemical Reactivity Theory: A Density Functional View ; CRC Press, 2009; pp 521–537. DOI: https://doi.org/10.1201/9781420065442.

Rojas, R. A.; Aquino, N. Rev. Mex. Fis. 2019, 65, 116–123. DOI: https://doi.org/10.31349/revmexfis.65.116.

Rojas, R. A.; Aquino, N.; Flores-Riveros, A. Int. J. Quantum Chem. 2018, 118, e25612. DOI: https://doi.org/10.1002/qua.25584.

Aquino, N.; Flores-Riveros, A., in electronic structure of quantum confined atoms and molecules; Springer International Publishing, 2014; Chapter 3, pp 59–89. DOI: https://doi.org/10.1007/978-3-319-09982-8_3.

Solorzano, A.; Aquino, N.; Flores-Riveros, A. Can. J. Phys. 2016, 94, 894–901. DOI: https://doi.org/10.1139/cjp-2015-0434.

Aquino, N.; Rojas, R. A. Eur. J. Phys. 2016, 37, 015401. DOI: https://doi.org/10.1088/0143-0807/37/1/015401.

Sen, K.; Mayer, B.; Schmidt, P.; Garza, J.; Vargas, R.; Vela, A. Int. J. Quantum Chem. 2002, 90, 491–496. DOI: https://doi.org/10.1002/qua.946.

Cabrera-Trujillo, R.; Cruz, S. A. Phys. Rev. A 2013, 87, 012502. DOI: https://doi.org/10.1103/PhysRevA.87.012502.

Ley-Koo, E.; Cruz, S. A. J. Chem. Phys. 1981, 74, 4603–4610. DOI: https://doi.org/10.1063/1.441649.

Cruz, S.; Ley-Koo, E.; Marín, J.; Taylor-Armitage, A. Int. J. Quantum Chem. 1995, 54, 3–11. DOI: https://doi.org/10.1002/qua.560540103.

Cruz, S. A.; Colin-Rodriguez, R. Int. J. Quantum Chem. 2009, 109, 3041–3054. DOI: https://doi.org/10.1002/qua.22257.

Olivares-Pilón, H.; Cruz, S. A. Int. J. Quantum Chem. 2017, 117, e25399. DOI: https://doi.org/10.1002/qua.25399.

Yanajara-Parra, H. H.; Corella, A.; Duarte-Alcaráz, F. A.; Vargas, R.; Garza, J. J. Phys. Commun. 2024, 8, 025004. DOI: https://doi.org/10.1088/2399-6528/ad246e.

Cruz, S. A.; Garrido-Aguirre, D. Radiat. Eff. Defects Solids 2020, 175, 202–217. DOI: https://doi.org/10.1080/10420150.2020.1718144.

Fernandez, F. M.; Aquino, N.; Flores-Riveros, A. Int. J. Quantum Chem. 2012, 112, 823–828. DOI: https://doi.org/10.1002/qua.23066.

Aquino, N.; Campoy, G.; Flores-Riveros, A. Int. J. Quantum Chem. 2005, 103, 267–277. DOI: https://doi.org/10.1002/qua.20508.

Estanon, C. R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J. S. Int. J. Quantum Chem. 2021, 121, e26424. DOI: https://doi.org/10.1002/qua.26424.

Estañón, C. R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J. S. Int. J. Quantum Chem. 2020, 121, e26192. DOI: https://doi.org/10.1002/qua.26192.

Sen, K.; Garza, J.; Vargas, R.; Aquino, N. Phys. Lett. A 2002, 295, 299–304. DOI: https://doi.org/10.1016/S0375-9601(02)00148-2.

Banerjee, A.; Sen, K. D.; Garza, J.; Vargas, R. J. Chem. Phys. 2002, 116, 4054–4057. DOI: https://doi.org/10.1063/1.1449460.

Cabrera-Trujillo, R.; Méndez-Fragoso, R.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys. 2017, 50, 135002. DOI: https://doi.org/10.1088/1361-6455/aa73a1.

Díaz-García, C.; Cruz, S. A. Phys. Lett. A. 2006, 353, 332–336. DOI: https://doi.org/10.1016/j.physleta.2005.12.091.

Aquino, N.; Garza, J.; Flores-Riveros, A.; Rivas-Silva, J.; Sen, K. J. Chem. Phys. 2006, 124, 054311. DOI: https://doi.org/10.1063/1.2148948.

Montgomery, H. E., Jr.; Aquino, N.; Flores-Riyeros, A. Phys. Lett. A 2010, 374, 2044–2047. DOI: https://doi.org/10.1016/j.physleta.2010.02.074.

Carmona-Espíndola, J.; Alcalde-Segundo, I.; Vargas, R.; Garza, J., in COMPUTATIONAL AND EXPERIMENTAL CHEMISTRY: Developments and applications; CRC Press: New Jersey, 2013; Chapter 5, pp 111–125. DOI: https://doi.org/10.1201/b15459.

Aquino, N. AIP Conf. Proc. 2014, 1579, 136–140. DOI: https://doi.org/10.1063/1.4862428.

Flores-Riveros, A.; Aquino, N.; Montgomery, H. E., Jr. Physics. Lett. A 2010, 374, 1246-1252. DOI: https://doi.org/10.1016/j.physleta.2009.12.062.

Young, T. D.; Vargas, R.; Garza, J. Phys. Lett. A. 2016, 380, 712–717. DOI: https://doi.org/10.1016/j.physleta.2015.11.021.

Garza, J.; Vargas, R. Adv. Quantum Chem. 2009, 57, 241–254. DOI: https://doi.org/10.1016/S0065-3276(09)00611-X.

Nasser, I.; Martínez-Flores, C.; Zeama, M.; Vargas, R.; Garza, J. Phys. Lett. A 2021, 392, 127136. DOI: https://doi.org/10.1016/j.physleta.2020.127136.

Martínez-Flores, C.; Martínez-Sánchez, M. A.; Vargas, R.; Garza, J. Eur. Phys. J. D 2021, 75, 100. DOI: https://doi.org/10.1140/epjd/s10053-021-00110-x.

Cruz, S.; Díaz-García, C.; Covarrubias, G. Int. J. Quantum Chem. 2005, 102, 897–910. DOI: https://doi.org/10.1002/qua.20452.

Cruz, S.; Díaz-García, C.; Pathak, A.; Soullard, J. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2005, 230, 46–52. DOI: https://doi.org/10.1016/j.nimb.2004.12.015.

Garza, J.; Vargas, R., in electronic structure of quantum confined atoms and molecules; Springer International Publishing, 2014; Chapter 8, pp 205–225. DOI: https://doi.org/10.1007/978-3-319-09982-8_8.

Cruz, S. A. Adv. Quantum Chem. 2009, 57, 255–283. DOI: https://doi.org/10.1016/S0065-3276(09)00612-1.

Garza, J.; Vargas, R.; Vela, A. Phys. Rev. E 1998, 58, 3949–3954. DOI: https://doi.org/10.1103/PhysRevE.58.3949.

García-Miranda, J.-J.; Vargas, R.; Garza, J. Phys. Rev. E 2023, 108, 035302. DOI: https://doi.org/10.1103/PhysRevE.108.035302.

Garza, J.; Hernández-Pérez, J. M.; Ramírez, J.-Z.; Vargas, R. J. Phys. B: At. Mol. Opt. Phys. 2011, 45, 015002. DOI: https://doi.org/10.1088/0953-4075/45/1/015002.

García-Hernández, E.; Díaz-García, C.; Vargas, R.; Garza, J. J. Phys. B: At. Mol. Opt. Phys. 2014, 47, 185007. DOI: https://doi.org/10.1088/0953-4075/47/18/185007.

García-Hernández, E.; Díaz-García, C.; Vargas, R.; Garza, J. AIP Conf. Proc. 2013, 1558, 1528–1531. DOI: https://doi.org/10.1063/1.4825814.

Sen, K.; Garza, J.; Vargas, R.; Vela, A. Chem. Phys. Lett. 2000, 325, 29–32. DOI: https://doi.org/10.1016/S0009-2614(00)00670-9.

Garza, J.; Vargas, R.; Vela, A.; Sen, K. J. Mol. Struc. (THEOCHEM) 2000, 501-502, 183–188. DOI: https://doi.org/10.1016/S0166-1280(99)00428-5.

Sen, K.; Garza, J.; Vargas, R.; Vela, A. Proc. Indian Natn. Sci. Acad. 2004, 70A, 675–681.

Guerra, D.; Vargas, R.; Fuentealba, P.; Garza, J. Adv. Quantum Chem. 2009, 58, 1–12. DOI: https://doi.org/10.1016/S0065-3276(09)00705-9.

Lozano-Espinosa, M.; Garza, J.; Galván, M. Philos. Mag. 2017, 97, 284–297. DOI: https://doi.org/10.1080/14786435.2016.1258498.

Garza, J.; Vargas, R.; Aquino, N.; Sen, K. J. Chem. Sci. 2005, 117, 379–386. DOI: https://doi.org/10.1007/BF02708341.

Duarte-Alcaráz, F.; Martínez-Sánchez, M.; Rivera-Almazo, M.; Vargas, R.; Rosas- Burgos, R.; Garza, J. J. Phys. B: At. Mol. Opt. Phys. 2019, 52, 135002. DOI: https://doi.org/10.1088/1361-6455/ab233b.

Cruz, S. A. Nucl. Instrum. Methods Phys. Res. B 2004, 222, 411–420. DOI: https://doi.org/10.1016/j.nimb.2004.03.063.

Cruz, S. A.; Chadderton, L. T. Radiat. Meas. 2005, 40, 765–769. DOI: https://doi.org/10.1016/j.radmeas.2005.06.029.

Cruz, S. A.; Ley-Koo, E.; Cabrera-Trujillo, R. Phys. Rev. A 2008, 78, 032905. DOI: https://doi.org/10.1103/PhysRevA.78.032905.

Cruz, S. A. Radiat. Eff. Defects Solids 2009, 164, 389–401. DOI: https://doi.org/10.1080/10420150902945603.

Hernández-Esparza, R.; Landeros-Rivera, B.; Vargas, R.; Garza, J. Ann. Phys. 2019, 531, 1800476. DOI: https://doi.org/10.1002/andp.201800476.

Pupyshev, V. A.; Montgomery, Jr. H. E. Ann. Phys. 2022, 534, 2200033. DOI: https://doi.org/10.1002/andp.202200033.

Colin-Rodriguez, R.; Cruz, S. A. J. Phys. B. At. Mol. Opt. Phys. 2010, 43, 235102. DOI: https://doi.org/10.1088/0953-4075/43/23/235102.

Cruz, S. A.; Soullard, J. Chem. Phys. Lett. 2004, 391, 138–142. DOI: https://doi.org/10.1016/j.cplett.2004.04.099.

Cruz, S. A.; Soullard, J. Int. J. Quantum Chem. 2001, 83, 271–278. DOI: https://doi.org/10.1002/qua.1053.

Cruz, S. A.; Ley-Koo, E. Adv. Quantum Chem. 2015, 71, 69–113. DOI: https://doi.org/10.1016/bs.aiq.2015.03.001.

Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J. F. Phys. Lett. A 2013, 377, 2062–2068. DOI: https://doi.org/10.1016/j.physleta.2013.05.048.

Martínez-Sánchez, M.-A.; Vargas, R.; Garza, J., in Asymptotic behavior: An overview; NOVA Science Publishers, 2020; pp 101–132.

Martínez -Sánchez, M.-A.; Vargas, R.; Garza, J. Quantum Reports 2019, 1, 208–218. DOI: https://doi.org/10.3390/quantum1020018.

Martínez -Sánchez, M.; Aquino, N.; Vargas, R.; Garza, J. Chem. Phys. Lett. 2017, 690, 14–19. DOI: https://doi.org/10.1016/j.cplett.2017.10.035.

Marin, J. L.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys. 1992, 25, 4365. DOI: https://doi.org/10.1088/0953-4075/25/21/006.

Aquino, N.; Rojas, R. A.; Montgomery, H. E. Rev. Mex. Fis. 2018, 64, 399–406. DOI: https://doi.org/10.31349/RevMexFis.64.399.

Rojas, R. A.; Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J. F. Eur. Phys. J. D 2021, 75, 116. DOI: https://doi.org/10.1140/epjd/s10053-021-00122-7.

Cabrera-Trujillo, R.; Cruz, S. A. Nucl. Instrum. Methods Phys. Res., Sect. B 2014, 320, 51–56. DOI: https://doi.org/10.1016/j.nimb.2013.12.011.

Cabrera-Trujillo, R.; Méndez-Fragoso, R.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys 2016, 49, 015005. DOI: https://doi.org/10.1088/0953-4075/49/1/015005.

Diaz-Garcia, C.; Cruz, S. A. Int. J. Quantum Chem. 2008, 108, 1572–1588. DOI: https://doi.org/10.1002/qua.21670.

Cruz, S. A.; Diaz-Garcia, C.; Olivares-Pilon, H.; Cabrera-Trujillo, R. Radiat. Eff. Defects Solids 2016, 171, 123–134. DOI: https://doi.org/10.1080/10420150.2016.1147041.

Rodriguez-Bautista, M.; Díaz-García, C.; Navarrete-López, A. M.; Vargas, R.; Garza, J. J. Chem. Phys. 2015, 143, 034103. DOI: https://doi.org/10.1063/1.4926657.

Martínez-Sánchez, M.; Rodriguez-Bautista, M.; Vargas, R.; Garza, J. Theor. Chem. Acc. 2016, 135, 207. DOI: https://doi.org/10.1007/s00214-016-1968-8.

Cruz, S.; Díaz-García, C.; Garrido-Aguirre, D.; Reyes-García, R. Eur. Phys. J. D 2021, 75, 143. DOI: https://doi.org/10.1140/epjd/s10053-021-00150-3.

Rodriguez-Bautista, M.; Vargas, R.; Aquino, N.; Garza, J. Int. J. Quantum Chem. 2018, 118, e25571. DOI: https://doi.org/10.1002/qua.25571.

Olivares-Pilón, H.; Escobar-Ruiz, A. M.; Quiroz-Juarez, M. A.; Aquino, N. Mach. Learn.-Sci. Technol. 2023, 4, 015024. DOI: https://doi.org/10.1088/2632-2153/acb901.

Cortés-Santiago, A.; Vargas, R.; Garza, J. J. Mex. Chem. Soc. 2012, 56, 270–274. DOI: https://doi.org/10.29356/jmcs.v56i3.289.

García-Miranda, J. J.; Garza, J.; Ibarra, I. A.; Martínez, A.; Martínez-Sánchez, M. A.; Rivera-Almazo, M.; Vargas, R., in Chemical Reactivity in Confined Systems; John Wiley & Sons, Ltd, 2021; Chapter 4, pp 69–79. DOI: https://doi.org/10.1002/9781119683353.ch4.

Cruz, S. A.; Soullard, J.; Gamaly, E. G. Phys. Rev. A. 1999, 60, 2207–2214. DOI: https://doi.org/10.1103/PhysRevA.60.2207.

Mateos-Cortés, S.; Ley-Koo, E.; Cruz, S. Int. J. Quantum Chem. 2002, 86, 376–389. DOI: https://doi.org/10.1002/qua.10067.

Colin-Rodriguez, R.; Diaz-Garcia, C.; Cruz, S. A. J. Phys. B-At. Mol. Opt. Phys. 2011, 44, 241001. DOI: https://doi.org/10.1088/0953-4075/44/24/241001.

Soullard, J.; Santamaria, R.; Cruz, S. Chem. Phys. Lett. 2004, 391, 187–190. DOI: https://doi.org/10.1016/j.cplett.2004.04.104.

Estañón, C. R.; Montgomery Jr, H. E.; Angulo, J. C.; Aquino, N. Int. J. Quantum Chem. 2024, 124, e27358. DOI: https://doi.org/10.1002/qua.27358.

Rojas, R. A.; Aquino, N.; Castaño, E. Rev. Mex. Fis. E. 2023, 20, 010205. DOI: https://doi.org/10.31349/RevMexFisE.20.010205.

Downloads

Published

2024-09-30

Most read articles by the same author(s)