Pyrone Biomonitored Synthesis

Authors

  • Clécio Souza Ramos Rural Federal University of Pernambuco
  • Marcílio Wagner Fontes Silva Rural Federal University of Pernambuco https://orcid.org/0000-0002-5914-5402

DOI:

https://doi.org/10.29356/jmcs.v69i2.2213

Keywords:

Yangonin, styrylpyrone, antifungal, antibacterial, antimicrobial, pyrone

Abstract

Abstract. Here we report the first biomonitored synthesis of pyrones in the search for molecules with antimicrobial action against pathogenic bacteria and fungi. Pyrones were synthesized from methyl acetoacetate pyrone rings followed by deacetylation, methylation, and aldol condensation reactions to obtain styrylpyrones with yields between 39 and 93 %. The compounds were characterized based on the interpretation of their UV, IR, MS and 1H and 13C NMR spectra. The reagents and products used in the first step of the reaction exhibited antimicrobial activity against the six microorganisms tested, except for methyl acetoacetate and benzaldehyde, which were inactive against Klebsiella pneumoniae bacteria. The results obtained contribute significantly to the knowledge of the antimicrobial potential of pyrones, considering that pyrone rings are widely used as building blocks in the synthesis of bioactive molecules. This is also the first report of antimicrobial activity for synthesized styrylpyrone.

 

Resumen. Aquí informamos la primera síntesis biomonitoreada de pironas en la búsqueda de moléculas con acción antimicrobiana contra bacterias y hongos patogénicos. Las pironas se sintetizaron a partir de anillos de pirona de acetoacetato de metilo seguido de reacciones de desacetilación, metilación y condensación aldólica para obtener estirilpironas con rendimientos entre 39 y 93 %. Los compuestos se caracterizaron basándose en la interpretación de sus espectros UV, IR, MS y RMN 1H y 13C. Los reactivos y productos utilizados en el primer paso de la reacción mostraron actividad antimicrobiana contra los seis microorganismos probados, excepto el acetoacetato de metilo y el benzaldehído, que fueron inactivos contra la bacteria Klebsiella pneumoniae. Los resultados obtenidos contribuyen significativamente al conocimiento del potencial antimicrobiano de las pironas, considerando que los anillos de pirona son ampliamente utilizados como componentes básicos en la síntesis de moléculas bioactivas. Este es también el primer informe sobre la actividad antimicrobiana de la estirilpirona sintetizada.

Downloads

Download data is not yet available.

Author Biographies

Clécio Souza Ramos, Rural Federal University of Pernambuco

Department of Chemistry

Marcílio Wagner Fontes Silva , Rural Federal University of Pernambuco

Department of Chemistry

References

Kang, L.; Jing, W.; Liu, Q.; Liu, J.; Liu, M. J. Infect. Public Health. 2022, 15, 870–876. DOI: https://doi.org/10.1016/j.jiph.2022.06.016. DOI: https://doi.org/10.1016/j.jiph.2022.06.016

Carvalho, I.; Silva, N.; Carrola, J.; Silva, V.; Currie, C.; Igrejas, G.; Poeta, P., in: Antibiotic Drug Resistance; Eds.; Wiley, 2019; Vol. 1, 239–259. DOI: https://doi.org/10.1002/9781119282549.ch11

Jaramillo, M. A.; Callejas, R., in: Piper: A Model Genus for Studies of Phytochemistry, Ecology, and

Evolution, Ed., Springer US: Boston, 2004; 179–198.

Costa-Lotufo, L. V.; Montenegro, R. C.; Alves, A. P. N. N.; Madeira, S. V. F.; Pessoa, C.; Moraes, M.

E. A. D.; Moraes, M. O. D. Rev. Virtual Quím. 2010, 2, 47–58. DOI: https://doi.org/10.5935/1984-6835.20100006. DOI: https://doi.org/10.5935/1984-6835.20100006

Koehn, F. E.; Carter, G. T. Nat. Rev. Drug Discov. 2005, 4, 206–220. DOI: https://doi.org/10.1038/nrd1657. DOI: https://doi.org/10.1038/nrd1657

Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2012, 75, 311-335. DOI:https://doi.org/10.1021/np200906s. DOI: https://doi.org/10.1021/np200906s

Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629–661. DOI: https://doi.org/10.1021/acs.jnatprod.5b01055. DOI: https://doi.org/10.1021/acs.jnatprod.5b01055

Righetti, G. I. C.; Tentori, F.; Brenna, E.; Gambarotti, C. React. Chem. Eng. 2023, 8, 199–204. DOI: https://doi.org/10.1039/D2RE00312K. DOI: https://doi.org/10.1039/D2RE00312K

Yi, D.; Agarwal, V. ACS Chem. Biol. 2023, 18, 1060–1065. DOI: https://doi.org/10.1021/acschembio.3c00081. DOI: https://doi.org/10.1021/acschembio.3c00081

Luo, C.; Xu, X.; Xu, J.; Chen, X. Org. Biomol. Chem. 2022, 20, 9298–9301. DOI:

https://doi.org/10.1039/D2OB01859D. DOI: https://doi.org/10.1039/D2OB01859D

Hu, C.; Jiang, L.; Tang, L.; Zhang, M.; Sheng, R. Bioorg. Med. Chem. 2021, 44, 116306. DOI: https://doi.org/10.1016/j.bmc.2021.116306. DOI: https://doi.org/10.1016/j.bmc.2021.116306

Obi, G.; Chukwujekwu, J. C.; Van Heerden, F. R. Synth. Commun. 2020, 50, 726–734. DOI: https://doi.org/10.1080/00397911.2020.1718710. DOI: https://doi.org/10.1080/00397911.2020.1718710

Xue, L.-W.; Han, Y.-J.; Luo, X.-Q. Acta Chim. Slov. 2019, 66, 622–628. DOI: https://doi.org/10.17344/acsi.2019.5039. DOI: https://doi.org/10.17344/acsi.2019.5039

Singh, K. S. Curr. Org. Chem. 2020, 24, 354–401. DOI:

https://doi.org/10.2174/1385272824666200217101400. DOI: https://doi.org/10.2174/1385272824666200217101400

Da Silva, A.; M. Da Silva, J.; V. Almeida, A.; S. Ramos, C. Nat. Prod. J. 2016, 6, 313–317. DOI: https://doi.org/10.26850/1678-4618eqj.v42.1.2017. DOI: https://doi.org/10.2174/2210315506666160916152524

Freitas Filho, J. R.; de Holanda, L. E. G.; Ramos, C. S. J. Mex. Chem. Soc. 2023, 67, 163-171. DOI: https://doi.org/ 10.29356/jmcs.v67i2.1866. DOI: https://doi.org/10.29356/jmcs.v67i2.1866

Nagawade, R. R.; Khanna, V. V.; Bhagwat, S. S.; Shinde, D. B. Eur. J. Med. Chem. 2005, 40, 1325– 1330. DOI: https://doi.org/10.1016/j.ejmech.2005.05.012. DOI: https://doi.org/10.1016/j.ejmech.2005.05.012

Filipponi, P.; Baxendale, I. R. Eur. J. Org. Chem. 2016, 2016, 2000–2012. DOI: https://doi.org/10.1021/acs.oprd.5b00331. DOI: https://doi.org/10.1002/ejoc.201600222

Kraus, G. A.; Wanninayake, U. K. Tetrahedron Lett. 2015, 56, 7112–7114. DOI: http://dx.doi.org/10.1016/j.tetlet.2016.02.043. DOI: https://doi.org/10.1016/j.tetlet.2015.11.021

Van, T.; Xuan, T.; Minh, T.; Quan, N. Molecules. 2018, 23, 1–13. DOI: https://doi.org/10.3390/molecules23081907. DOI: https://doi.org/10.3390/molecules23081907

Kumagai, M.; Mishima, T.; Watanabe, A.; Harada, T.; Yoshida, I.; Fujita, K.; Watai, M.; Tawata, S.; Nishikawa, K.; Morimoto, Y. Biosci. Biotechnol. Biochem. 2016, 80, 1425–1432. DOI: https://doi.org/10.1080/09168451.2016.1153959. DOI: https://doi.org/10.1080/09168451.2016.1153959

Soldi, C.; Moro, A. V.; Pizzolatti, M. G.; Correia, C. R. D. Eur. J. Org. Chem. 2012, 2012, 3607– 3616. DOI: https://doi.org/10.1002/ejoc.201200308. DOI: https://doi.org/10.1002/ejoc.201200308

Upadhyay, A.; Chompoo, J.; Kishimoto, W.; Makise, T.; Tawata, S. J. Agric. Food Chem. 2011, 59, 2857–2862. DOI: https://doi.org/10.1021/jf104813k. DOI: https://doi.org/10.1021/jf104813k

Manda, B.; Prasad, A.; Thatikonda, N.; Lacerda Jr., V.; Barbosa, L.; Santos, H.; Romão, W.; Pavan, F.; Ribeiro, C.; Dos Santos, E.; et al. J. Braz. Chem. Soc. 2018, 29, 639–648. DOI: https://dx.doi.org/10.21577/0103-5053.20170178. DOI: https://doi.org/10.21577/0103-5053.20170178

De Paiva, R.; Da Silva, J.; Moreira, H.; Pinto, O.; Camargo, L.; Naves, P.; Camargo, A.; Ribeiro, L.; Ramos, L. J. Braz. Chem. Soc. 2019, 30, 164–172. DOI: https://doi.org/10.21577/0103-5053.20180158. DOI: https://doi.org/10.21577/0103-5053.20180158

Nechak, R.; Achouche Bouzroura, S.; Benmalek, Y.; Boufroua, N.; Nedjar Kolli, B.; Poulain Martini, S.; Duñach, E. Synth. Commun. 2019, 49, 1895–1905. DOI: https://doi.org/10.1080/00397911.2019.1606918. DOI: https://doi.org/10.1080/00397911.2019.1606918

Fadda, A. A.; Amine, M. S.; Arief, M. M. H.; Farahat, E. Kh. Pharmacologia. 2014, 5, 1–11. https://scialert.net/abstract/?doi=pharmacologia.2014.1.11. DOI: https://doi.org/10.5567/pharmacologia.2014.1.11

Baldwin, A. G.; Bevan, J.; Brough, D.; Ledder, R.; Freeman, S. Med. Chem. Res. 2018, 27, 884–889. DOI: https://doi.org/10.1007/s00044-017-2110-8. DOI: https://doi.org/10.1007/s00044-017-2110-8

Zheng, Y. Y.; Liang, Z. Y.; Shen, N. X.; Liu, W. L.; Zhou, X. J.; Fu, X. M.;Wang, C. Y. Mar. Drugs.

, 17, 322. DOI: https://doi.org/10.3390/md17060322. DOI: https://doi.org/10.3390/md17060322

He, Y.; Tian, J.; Chen, X., Sun, W.; Zhu, H.; Li, Q.; Zhang, Y. Sci. Rep. 2016, 6, 24291. DOI:

https://doi.org/10.1038/srep24291. DOI: https://doi.org/10.1038/srep24291

Chaurasiya, N. D.; León, F.; Ding, Y.; Gómez-Betancur, I.; Benjumea, D.; Walker, L. A.; Cutler, S. J.; Tekwani, B. L. Evid. Based Complement. Alternat. Med. 2017, 2017, 1–10. DOI: https://doi.org/10.1155/2017/4018724. DOI: https://doi.org/10.1155/2017/4018724

Chou, T.-W.; Feng, J.-H.; Huang, C.-C.; Cheng, Y.-W.; Chien, S.-C.; Wang, S.-Y.; Shyur, L.-F. PLoS

ONE. 2013, 8, e77626. DOI: https://doi.org/10.1371/journal.pone.0077626. DOI: https://doi.org/10.1371/journal.pone.0077626

Dong, R.; Wang, X.; Wang, L.; Wang, C.; Huang, K.; Fu, T.; Liu, K.; Wu, J.; Sun, H.; Meng, Q. Eur. J. Parmachol. 2021, 890, 173653. DOI: https://doi.org/10.1016/j.ejphar.2020.173653. DOI: https://doi.org/10.1016/j.ejphar.2020.173653

Downloads

Additional Files

Published

2025-04-11

Issue

Section

Regular Articles