Electrochemical Evaluation of Carbon Steel and Galvanized Steel Rebar Embedded in Sustainable Ternary Blended Concrete by EIS

Authors

  • Aldo Emelio Landa-Gomez Universidad Veracruzana
  • Gerardo Fajardo-San Miguel Universidad Autónoma de Nuevo León
  • Dulce Maria Anahi Cruz-Moreno Universidad Autónoma de Nuevo León
  • Andres Carmona-Hernandez Universidad Veracruzana
  • Ricardo Orozco-Cruz Universidad Veracruzana
  • Ricardo Galván-Martínez Universidad Veracruzana https://orcid.org/0000-0003-2889-1135

DOI:

https://doi.org/10.29356/jmcs.v69i2.2178

Keywords:

Corrosion, impedance, ternary concrete, pozzolan, durability

Abstract

Abstract. This research investigated the effect of supplementary cementitious materials (SCMs) on the electrochemical corrosion behavior of carbon steel (CS) and galvanized steel (GS) rebars embedded in ternary blended systems by electrochemical impedance spectroscopy (EIS) measurements. These steel-concrete systems were prepared with a water/cement ratio of 0.45 and partial substitutions of the Ordinary Portland Cement (OPC) by sugarcane bagasse ash (SCBA) and fly ash (FA). The OPC and SCMs were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD) analysis. The EIS results indicated that the SCMs contributed to the electrochemical behavior of ternary steel-concrete at an early stage of the hydration process. The higher values of resistance (Rfilm) were obtained in the concentration of 30 % substitution. This fact was attributed to the oxygen decrease on the metal surface, which was confirmed by the decrease of the electrochemical double layer capacitance (Cdl) value with respect to the reference specimen.

 

Resumen. Esta investigación estudió el efecto de materiales cementantes suplementarios (SCM) sobre el comportamiento de la corrosión electroquímica de barras de refuerzo de acero al carbono y acero galvanizado embebidas en sistemas de concreto ternarios mediante mediciones de Espectroscopía de Impedancia Electroquímica (EIS). Estos sistemas acero-concreto se prepararon con una relación agua/cemento de 0.45 y sustituciones parciales del Cemento Portland Ordinario (OPC) por ceniza de bagazo de caña (SCBA) y cenizas volantes (FA). El OPC y los SCM se caracterizaron mediante análisis de microscopía electrónica de barrido (SEM) y difracción de rayos X (DRX). Los resultados del EIS indicaron que los SCM contribuyeron al comportamiento electroquímico del acero-hormigón ternario en una etapa temprana del proceso de hidratación. Los mayores valores de resistencia (Rfilm) se obtuvieron en la concentración del 30 % de sustitución. Este hecho se atribuyó a la disminución de oxígeno en la superficie del metal, lo que fue confirmado por la disminución del valor de capacitancia electroquímica de doble capa (Cdl) con respecto a la muestra de referencia.

Downloads

Download data is not yet available.

Author Biographies

Aldo Emelio Landa-Gomez, Universidad Veracruzana

Facultad de Ingeniería Civil

Gerardo Fajardo-San Miguel , Universidad Autónoma de Nuevo León

Facultad de Ingeniería Civil

Dulce Maria Anahi Cruz-Moreno, Universidad Autónoma de Nuevo León

Facultad de Ingeniería Civil

Andres Carmona-Hernandez , Universidad Veracruzana

Unidad Anticorrosión, Instituto de Ingeniería

Ricardo Orozco-Cruz , Universidad Veracruzana

Unidad Anticorrosión, Instituto de Ingeniería

Ricardo Galván-Martínez, Universidad Veracruzana

Unidad Anticorrosión, Instituto de Ingeniería

References

Franco-Luján, V. A.; Maldonado-García, M. A.; Mendoza-Rangel, J. M.; Montes-García, P. Constr. Build. Mater. 2019, 198, 608–618. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.004.

Sales, A.; Lima, S. A. Waste Manage. 2010, 30, 1114–1122. DOI: https://doi.org/10.1016/j.wasman.2010.01.026.

Scrivener, K. L.; John, V. M.; Gartner, E. M. Cem. Concr. Res. 2018, 114, 2–26. DOI: https://doi.org/10.1016/j.cemconres.2018.03.015.

Paris, J. M.; Roessler, J.G.; Ferraro, C. C.; DeFord, H. D.; Townsend, T. G. J. Clean. Prod. 2016, 121, 1–18. DOI: https://doi.org/10.1016/j.jclepro.2016.02.013.

Lin, Y.; Alengaram, U.J.; Ibrahim, Z. J. Build. Eng. 2023, 78, 107500. DOI: https://doi.org/10.1016/j.jobe.2023.107500.

Cordeiro, G.C.; Tavares, L.M.; Toledo-Filho, R. D. Cem. Concr. Res. 2016, 89, 269–275. DOI: https://doi.org/10.1016/j.cemconres.2016.08.020.

Khalil, M. J.; Aslam, M; Ahmad, S Constr. Build. Mater. 2021, 270, 121371. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121371.

Arenas-Piedrahita, J. C.; Montes García, P.; Mendoza-Rangel, J.M.; López-Calvo, H. Z.; Valdez-Tamez, P. L; Martínez-Reyes, J. Constr. Build. Mater. 2016, 105, 69–81. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.047.

Ríos-Parada, V.; Jiménez-Quero V.G.; Valdez-Tamez, P.L.; Montes-García, P. Constr. Build. Mater. 2017, 157, 83–95. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.060.

Franco-Luján, V. A.; Mendoza-Rangel, J. M.; Jiménez-Quero V. G.; Montes-García, P. Cem. Concr. Compos. 2021, 120, 104040. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104040.

Hu, X.; Shi, C.; Liu, X.; Zhang, J.; de Schutter, G. Cem. Concr. Compos. 2019, 100, 1–14. DOI: https://doi.org/10.1016/j.cemconcomp.2019.03.018.

Ribeiro, D. V.: Abrantes, J.C.C. Constr. Build. Mater. 2016, 111, 98–104. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.047.

Lazanas, A.C.; Prodromidis M.I. ACS Meas. Sci. Au. 2023, 3, 162–193. DOI: https://doi.org/10.1021/acsmeasuresciau.2c00070.

Vedalakshmi, R.; Saraswathy, V.; Song, H. W.; Palaniswamy, N. Corros. Sci. 2009, 51, 1299–307. DOI: https://doi.org/10.1016/j.corsci.2009.03.017.

Oliveira AM de, Cascudo O. Constr. Build. Mater. 2018, 192, 467–477. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.100.

Zheng, H.; Dai, J, G.; Poon, C. S.; Li, W. Cem. Concr. Res. 2018, 108, 46–58. DOI: https://doi.org/10.1016/j.cemconres.2018.03.001.

de A.M., Rezende M; Corradini, P.G.; Sales, A; Mascaro, L.H. Constr. Build. Mater. 2023, 397, 132341. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132341.

Annaba, K; El Mendili, Y.; Stout, H.; Ech-chebab, A.; Ouaki, B.; Cherkaoui, M.; et al. Case Stud. Constr. Mat. 2023, 19, e02620. DOI: https://doi.org/10.1016/j.cscm.2023.e02620.

Stern, M.; Geary, A. L. J. Electrochem. Soc. 1957, 104, 56. DOI: https://doi.org/10.1149/1.2428496.

Hu, J.; Deng, P.; Li, X.; Zhang, J.; Wang, G. Constr. Build. Mater. 2018, 183, 180–188. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.015.

Rivera-Corral, J. O.; Fajardo, G.; Arliguie G.; Orozco-Cruz, R., Deby, F., Valdez, P. Constr. Build. Mater. 2017, 147, 815–826. DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.186.

Chakraborty, S.; Jo, B. W.; Yoon, Y. S. in: Smart Nanoconcretes and Cement-Based Materials, Elsevier, Netherlands, 2020, 183–213 DOI: https://doi.org/10.1016/B978-0-12-817854-6.00007-6.

Cruz-Moreno, D.; Fajardo, G.; Flores-Vivian, I.; Orozco-Cruz, R.; Ramos-Rivera, C. Appl. Surf. Sci. 2020, 531, 147355. DOI: https://doi.org/10.1016/j.apsusc.2020.147355.

Wang, W.; Lu, C.; Li, Y.; Yuan, G.; Li, Q. Constr. Build. Mater. 2017, 138, 486–495. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.039.

Cordeiro, G. C.; Tavares L. M.; Toledo Filho, R.D. Cem. Concr. Res. 2016, 89, 269–275. DOI: https://doi.org/10.1016/j.cemconres.2016.08.020.

Marchon, D.; Flatt, R. J. in: Science and Technology of Concrete Admixtures, Elsevier, 2016, 129–145 DOI: https://doi.org/10.1016/B978-0-08-100693-1.00008-4.

Van Damme, H.; Pellenq, R. J. M.; Ulm, F.J. in: Developments in Clay Science, Elsevier, Vol. 5, 2013, 801–817 DOI: https://doi.org/10.1016/B978-0-08-098258-8.00027-4.

Charan, S.S.; Dey, S.; Kumar, V.V.P.; Sireesha, T. Architecture, Structures and Construction. 2023, 3, 347–372. DOI: https://doi.org/10.1007/s44150-023-00096-7.

Cordeiro, G. C.; Toledo Filho, R. D.; Tavares, L. M.; Fairbairn, E. de M. R. Cem. Concr. Res. 2009, 39, 110–115 DOI: https://doi.org/10.1016/j.cemconres.2008.11.005.

Andrade, C.; Alonso, C. Constr. Build. Mater. 1996, 10, 315–328. DOI: https://doi.org/10.1016/0950-0618(95)00044-5.

Castro-Borges, P.; Balancán-Zapata, M.; Zozaya-Ortiz, A. Adv. Mater. Sci. Eng. 2017, 1–8. DOI: https://doi.org/10.1155/2017/6973605.

Padilla, V.; Alfantazi, A. Constr. Build. Mater. 2014, 66, 447–457. DOI: https://doi.org/10.1016/j.conbuildmat.2014.05.053.

Tan, Z. Q.; Hansson, C. M. Corros. Sci. 2008, 50, 2512–2522. DOI: https://doi.org/10.1016/j.corsci.2008.06.035.

Sohail, M.G.; Kahraman, R.; Alnuaimi, N.A.; Gencturk, B.; Alnahhal, W.; Dawood, M.; et al. Constr. Build. Mater. 2020, 232, 117205. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117205.

Zheng, H.; Dai, J. G.; Li, W.; Poon, C. S. Constr. Build. Mater. 2018, 166, 572–580. DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.174.

Brug, G. J.; van den Eeden, A. L. G.; Sluyters-Rehbach M.; Sluyters, J. H. J. Electroanal. Chem. Interf. Electrochem. 1984, 176, 275–295. DOI: https://doi.org/10.1016/S0022-0728(84)80324-1.

Vedalakshmi, R.; Palaniswamy, N. Mag. Concr. Res. 2010, 62, 177–189. DOI: https://doi.org/10.1680/macr.2010.62.3.177.

Ahmad, Z. in: Principles of Corrosion Engineering and Corrosion Control, Elsevier, 2006, 609–646. DOI: https://doi.org/10.1016/B978-075065924-6/50013-1.

Sánchez-Moreno, M.; Takenouti, H.; García-Jareño, J. J.; Vicente, F.; Alonso, C. Electrochim. Acta. 2009, 54, 7222-7226. DOI: https://doi.org/10.1016/j.electacta.2009.07.013.

Popov, B. N. in: Corrosion Engineering, Elsevier, 2015, 525–556 DOI: https://doi.org/10.1016/B978-0-444-62722-3.00012-4.

Tittarelli, F.; Bellezze, T. Corros. Sci. 2010, 52, 978–983. DOI: https://doi.org/10.1016/j.corsci.2009.11.021.

Pokorný P.; Tej, P.; Kouřil, M. Constr. Build. Mater. 2017, 132, 271–289. DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.096.

Downloads

Published

2025-04-01

Issue

Section

Regular Articles