Alpha-glucosidase and Alpha-amylase Inhibitors Derived from Naturally Occurring Prenylated Isoflavones

Authors

  • Brandón Hernández Instituto Politécnico Nacional
  • María del Carmen Cruz Instituto Politécnico Nacional
  • Omar Gómez Instituto Politécnico Nacional
  • Elvia Becerra Instituto Politécnico Nacional
  • Fabiola Eloisa Jiménez Instituto Politécnico Nacional
  • Aaron Mendieta Instituto Politécnico Nacional

DOI:

https://doi.org/10.29356/jmcs.v68i1.2129

Keywords:

Diabetes mellitus, α-Glucosidase, α-Amylase, Prenylated isoflavones, Pyranoisoflavones

Abstract

A series of prenylated isoflavones were synthesized to evaluate their inhibitory effect against α-glucosidase and α-amylase enzymes, analyzing the bioisosteric effect of the linear or cyclized prenyl moiety in these benzopyran derivatives. Compound 5a exhibited higher α-glucosidase inhibition (IC50 = 60.5 µM) and lower α-amylase inhibition (IC50 = 85.0 µM) compared to acarbose (IC50 = 527.5 µM for α-glucosidase and 20.1 µM for α-amylase). In contrast, prenylated isoflavone 5c showed higher inhibition in both enzymes (IC50 = 17.6 µM for α-glucosidase and 21.2 µM for α-amylase). This suggests that the attachment of a prenyl moiety to the 7-hydroxy group of isoflavone provides higher inhibition in the enzymes α-glucosidase and α-amylase. Docking studies of compounds 5a and 5c displayed key interactions towards both enzymes. The type of inhibition for 5c was analyzed, where the results indicate a competitive inhibition of both α-glucosidase and α-amylase. Finally, ADMET studies support that compounds 5a and 5c are candidates for the design of novel isoflavones derivatives with antidiabetic potential.

 

Resumen. Una serie de isoflavonas preniladas se sintetizaron para evaluar su efecto inhibidor sobre las enzimas α-glucosidasa y α-amilasa, analizando el efecto bioisotérico del fragmento prenilo tipo lineal o ciclado en estos benzopiranos derivados. El compuesto 5a exhibió una inhibición alta de α-glucosidasa (CI50 = 60.5 µM) y una inhibición más baja de α-amilasa (CI50 = 85.0 µM, respectivamente) en comparación con acarbosa (CI50 = 527.5 y 20.1 µM). La isoflavona prenilada 5c mostró mayor inhibición en ambas enzimas (CI50 = 17.7 µM para α-glucosidasa y 21.2 µM para α-amilasa). Esto sugiere que la unión del fragmento prenilo al hidroxilo de la posición 7 de la isoflavona ocasiona una mayor inhibición en las enzimas α-glucosidasa y α-amilasa. Los compuestos 5a y 5c mostraron interacciones clave hacia el sitio activo de ambas enzimas, de acuerdo con los cálculos de acoplamiento. Se analizó el tipo de inhibición para 5c, donde los resultados indican una inhibición competitiva tanto de α-glucosidasa como de α-amilasa. Finalmente, los estudios ADMET respaldan que los compuestos 5a and 5c son candidatos para el diseño de nuevos derivados de isoflavonas con potencial antidiabético.

Downloads

Download data is not yet available.

References

World Health Organization. Diabetes (who.int), accessed in February 2023.

Proenca, C.; Ribeiro, D.; Freitas, M.; Fernandes, E. Crit. Rev. Food Sci. Nut. 2022. 62, 3137-3207. DOI: https://doi.org/10.1080/10408398.2020.1862755.

Upadhyay, J.; Polyzos, S. A.; Perakakis, N.; Thakkar, B.; Paschou, S. A.; Katsiki, N.; Underwood, P.; Park, K-H.; Seufert, J.; Kang, E. S.; Sternthal, E.; karagiannis, A.; Mantzoros, C. S. Metabolism. 2018, 78, 13-42. DOI: https://doi.org/10.1016/j.metabol.2017.08.10

Jo, Y. H.; Lee, S.; Yeon, S. W.; Ryu, S. H.; Turk, A.; Hwang, B. Y.; Han, Y. K.; Lee, K. Y.; Lee, M. K. Phytochemistry. 2022, 194, 113016. DOI: https://doi.org/10.1016/j.phytochem.2021.113016.

Ahmed, Q. U.; Ali, A. H. M.; Mukhtar, S.; Alsharif, M. A.; Parveen, H.; Sabere, A. S. M.; Nawi, M. S. M.; Khatib, A.; Siddiqui, M. J.; Umar, A.; Alhassan, A. M. Molecules. 2020, 25, 5491. DOI: https://doi.org/10.3390/molecules25235491.

Hu, W.; Wu, X.; Tang, J.; Zhao, G.; Xiao, N.; Zhang, L.; Li, S. J. Cell Mol. Med. 2019, 23, 3505-3511. DOI: https://doi.org/10.1111/jcmm.14248.

Wei, Z.; Yang, Y.; Xie, C.; Li, C.; Wang, G.; Ma, L.; Xiang, M.; Sun, J.; Wei, Y.; Chen, L. Fitoterapia. 2014, 97, 172-183. DOI: https://doi.org/10.1016/j.fitote.2014.06.002.

Ndemangou, B.; Sielinou, V. T.; Vardamides, J. C.; Ali, M. S.; Lateef, M.; Iqbal, L.; Afza, N.; Nkengfack, E. J. Enzyme Inhib. Med. Chem. 2013, 28, 1156-1161. DOI: https://doi.org/10.3109/14756366.2012.719025.

Cardullo, N.; Muccilli, V.; Pulvirenti, L.; Tringali, C. J. Nat. Prod. 2021, 84, 654-665. DOI: https://dx.doi.org/10.1021/acs.jnatprod.0c01387.

Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, I. Biotechnol. Appl. Biochem. 2019, 781-786. DOI: https://doi.org/10.1002/bab.1781.

Sun, H.; Li, Y.; Zhang, X.; Lei, Y.; Ding, W.; Zhao, X.; Wang, H.; Song, X.; Yao, Q.; Zhang, Y.; Ma, Y.; Wang, R.; Zhu, T.; Yu, P. Bioorg. Med. Chem. Lett. 2015, 25, 4567-4571. DOI: https://doi.org/10.1016/j.bmcl.2015.08.059.

Wu, C.; Tu, Y-B.; Li, Z.; Li, Y-F. Bioorg. Chem. 2019, 88, 102949. DOI: https://doi.org/10.1016/j.bioorg.2019.102949.

Polbuppha, I.; Suthiphasilp, V.; Maneerat, T.; Charoensup, R.; Limtharakul, T.; Cheenpracha, S.; Pyne, S. G.; Laphookhieo, S. Phytochemistry. 2021, 187, 112773. DOI: https://doi.org/10.1016/j.phytochem.2021.112773.

Jo, Y. H.; Lee, S.; Yeon, S. W.; Turk, A.; Lee, J. H.; Hong, S. M.; Han, Y. K.; Lee, K. Y.; Hwang, B.; Y.; Kim, S. Y.; Lee, M. K. Bioorg. Chem. 2021, 114, 105098. DOI: https://doi.org/10.1016/j.bioorg.2021.105098.

Lv, H-W.; Wang, Q-L.; Luo, M.; Zhu, M-D.; Lian, H-M.; Li, W-J.; Cai, H.; Zhou, Z-B.; Wang, H.; Tong, S-Q.; Li, X-N. Arch. Pharm. Res. 2023, 46, 207-272. DOI: http://doi.org/10.1007/s12272-023-01443-4.

Wen, R.; Lv, H.; Jiang, Y.; Tu, P. Bioorg. Med. Chem. Lett. 2018, 28, 1050-1055. DOI: https://doi.org/10.1016/j.bmcl.2018.02.026.

Hikita, K.; Salgusa, S.; Takeuchi, Y.; Matsuyama, H.; Nagai, R.; Kato, K.; Murata, T.; Tanaka, H.; Wagh, Y. S.; Asao, N.; Kaneda, N, Bioorg. Med. Chem. 2020, 28, 115490. DOI: https://doi.org/10.1016/j.bmc.2020.115490.

Buyinza, D.; Yang, L. J.; Derese, S.; Ndakala, A.; Coghi, P.; Heydenreich, M.; Wong, V. K. W.; Moller, H. M.; Yenesew, A. Nat. Prod. Res. 2021, 35, 2744-2747. DOI: https://doi.org/10.1080/14786419.2019.1660335.

Chang, S. K.; Jiang, Y.; Yang, B. Trends Food Sci. Technol. 2021, 108, 197-213. DOI: https://doi.org/10.1016/j.tifs.2020.12.022.

Dirir, A.M.; Daou, M.; Yousef, A.; Yousef, L. F. Phytochem Rev. 2022, 21, 1049-1079. DOI: https://doi.org/10.1007/s11101-021-09773-1.

Park, M-H.; Ju, J-W.; Park, M-J.; Han, J-S. Eur. J. Pharmacol. 2013, 712, 48-52. DOI: https://doi.org/10.1016/j.ejphar.2013.04.047.

Aguila-Muñoz, D. G.; Cervantes-Espinoza, E.; Escalante, C. H.; Gutiérrez, R. U.; Cruz-López, M. C.; Jiménez-Montejo, F. E.; Villa-Ruano, N.; Gómez-García, O.; Tamariz, J.; Mendieta-Moctezuma, A. Med. Chem. Res. 2022, 31, 1298-1312. DOI: https://doi.org/10.1007/s00044-022-02910-1.

Yenesew, A.; Midiwo, J. O.; Waterman, P. G. J. Nat. Prod. 1997, 60, 806-807. DOI: https://doi.org/10.1021/np9605955.

Yao, H.; Xu, F.; Wang, G.; Xie, S.; Li, W.; Yao, H.; Ma, C.; Zhu, Z.; Xu, J.; Xu, S. Eur. J. Med. Chem. 2019, 167, 485-498. DOI: https://doi.org/10.1016/j.ejmech.2019.02.014.

Do, L. T. M.; Huynh, T. T. N.; Sichaem, J. Molecules. 2022. 27, 4624. DOI: https://doi.org/10.3390/molecules27144624.

Chokki, M.; Cudalbeanu, M.; Zongo, C.; Dah-Nouvlessounon, D.; Ghinea, I. O.; Furdui, B.; Raclea, A.; Savadogo, A.; Baba-Moussa, L.; Avamescu, S. M.; Dinica, F. M.; Baba-Moussa, F. Foods. 2020, 9, 434. DOI: https://doi.org/10.3390/foods9040434.

Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785-2791. DOI: https://doi.org/10.1002/jcc.21256.

Bioinformatics and Molecular Design Research Center. Seul, South Corea, 2004. PreADMET Program. Available from: https://preadmet.webservice.bmdrc.org, accessed in June 2023.

BIOVIA, Dassault Systèmes, Discovery Studio Visualizer v20.1.0.19295, San Diego: Dassaul Systèmes (2020).

Choudhury, M. K.; Shiferaw, Y.; Sur, K. R.; Dey, D.; Debnathan, S.; Ghosh, S.; Ray, R.; Hazra, B. J. Coast. Life Med. 2016. 4, 556-563. DOI: https://doi.org/10.12980/jclm.4.2016J6-84.

Deyou, T.; Marco, M.; Heydenreich, M.; Pan, F.; Gruhonjic, A.; Fitzpatrick, P. A.; Koch, A.; Derese, S.; Pelletier, J.; Rissanen, K.; Yenesew, A.; Erdélyi, M. J. Nat. Prod. 2017. 2060-2066. DOI: https://doi.org/10.1021/acs.jnatprod.7b00255.

Na, Z.; Fan, Q-F.; Song, Q-S.; Hu, H-B. Phytochem. Lett. 2017. 19, 215-219. DOI: https://doi.org/10.1016/j.phytol.2017.02.002.

Do, L. T. M.; Huynh, T. T. N.; Tran, Q. H. N.; Nguyen, H. T. M.; Nguyen, T. T. A.; Nguyen, T. T. N.; Nguyen, P. H. H.; Sichaem, J. Nat. Prod. Res. 2022. 1-7. DOI: https://doi.org/10.1080/14786419.2022.2110092.

Aguila-Muñoz, D. G.; Vázquez-Lira, G.; Sarmiento-Tlale, E.; Cruz-López, M. C.; Jiménez-Montejo, F. E.; López y López, V. E.; Escalante, C. H.; Andrade-Pavón, D.; Gómez-García, O.; Tamariz, J.; Mendieta-Moctezuma, A. Molecules. 2023. 28, 4180. DOI: https://doi.org/10.3390/molecules28104180.

Downloads

Additional Files

Published

2024-01-01

Issue

Section

Special Issue dedicated to Prof. Joaquín Tamariz