A DFT Study of the Hydrogen Storage Potentials and Properties of Ca, Fe, and Ti Deposited NaSi20 Fullerenes

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i3.2073

Keywords:

NaSi20 fullerenes, DFT methods, hydrogen storage

Abstract

Abstract. In this work, the hydrogen storage materials of Ca, Fe, and Ti deposited NaSi20 clusters were investigated utilizing DFT methods (B3LYP and M06-2X) combined with the 6-311++G(d, p) basis set. The results show that Ca, Fe, and Ti atoms tend to bind with two adjacent Si atoms. The Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20 can adsorb up to three, four, and six hydrogen molecules, respectively. The adsorption energy (Eads) per hydrogen molecule meets the United States Department of Energy (DOE) target for hydrogen storage materials for nH2-Ti@NaSi20 (n = 2-6) and nH2-Fe@NaSi20 (n = 1- 4), implying that NaSi20 fullerene could be a potentially suitable material for hydrogen storage.

 

Resumen. Utilizando métodos de la DFT (B3LYP y M06-2X) combinados con las bases 6-311++G(d, p), en este trabajo se investigaron materiales para el almacenamiento de hidrógeno a base de Ca, Fe, y Ti depositados en cúmulos de NaSi20. Los resultados muestran que los átomos de Ca, Fe, y Ti tienden a unirse a dos átomos adyacentes de Si. Los cúmulos Ca@NaSi20, Fe@NaSi20, y Ti@NaSi20 pueden adsorber hasta tres, cuatro y seis moléculas de hidrógeno, respectivamente. Las energías de adsorción por molécula de hidrógeno (Eads) de nH2-Ti@NaSi20 (n = 2-6) y nH2-Fe@NaSi20 (n = 1- 4) cumplen con el objetivo del Departamento de Energía de los Estados Unidos (DOE) lo que implica que el fullereno NaSi20 puede ser un material potencialmente adecuado para el almacenamiento de hidrógeno.

Downloads

Download data is not yet available.

Author Biographies

Huixi Yang, Xi’an Polytechnic University

Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering

Bin Liu, Xi’an Polytechnic University

Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering

Hongjiang Ren, Xi’an University

School of Chemical Engineering

References

Hoel, M.; Kverndok, K. Resour Energy Econ. 1996, 18, 115-136.

Kale, P. Int J Hydrogen Energy. 2012, 37, 3741-3747.

Bailleux, C. Int J Hydrogen Energy. 1981, 6, 461.

Mazloomi, K. Renew Sust Energ Rev. 2012, 16, 3024-3033.

Anafcheh, M. Int J Hydrogen Energy. 2018, 43, 12271-12277.

Xu, W. Prog Chem. 2006, 18, 200-201.

Gong, J. M. Natural Gas Chem. Indus. 2010, 5, 71.

Sahaym, U. J Mater Sci. 2008, 43, 5395.

Wang, Q.; Sun, Q.; Jena, P.; Kawazoe, Y. J Chem Theory Comput. 2009, 5, 374-379.

Zhang, D. J.; Ma, C.; Liu, C. B. J Phys Chem C. 2007, 111, 17099.

Khanna, S. N.; Rao, B. K.; Jena, P. Phys Rev Lett. 2002, 89, 016803.

Kumar, V.; Kawazoe, Y. Phys Rev Lett. 2003, 90, 055502.

Ryou, J.; Hong, S.; Kim, G. Solid State Commun. 2008, 148, 469-471.

Kumar, V.; Kawazoe, Y. Phys Rev B. 2007, 75, 155425.

Sporea, C.; Rabilloud, F. J Chem Phys. 2007, 127, 164306.

Ammar, H. Y.; Badran, H. M. Int J Hydrogen. Energy. 2021, 46, 14565-14580.

Williamson, A. J.; Reboredo, F. A.; Galli, G. Appl Phys Lett. 2004, 85, 2917-2919.

Yoon, M.; Yang, S.Y.; Hicke, C.; Wang, E. Phys Rev Lett. 2008, 100, 206806.

Wang, C. J.; Tang, C. M.; Zhang, Y. J.; Gao, F. Z. Chem Res Chin Univ. 2014, 35, 2131-2137.

Kohn, W.; Sham, L. J. Phys Rev. 1965, 140, 1133-1138.

Mao, W. L.; Mao, H. K. Proc Natl Acad Sci USA. 2004, 101, 708-710.

Frisch, M. J. Gaussian 09, revision D.01, Wallingford, CT: Gaussian, Inc, 2009.

Guo, C.; Wang, C. Int J Hydrogen Energy. 2019, 44, 10763-10769.

Borshch, N. A.; Pereslavtseva, N. S.; Kurganskiĭ, S. I. Semiconductors. 2006, 40, 1457-1462.

Baei, M. T.; Koohi, M.; Shariati, M. J Mol Struct. 2018, 1159, 118-134.

Kubas, G. J. Kluwer Academic/Plenum Publishing. 2001.

Padhee, S. P.; Roy, A.; Pati, S. Int J Hydrogen Energy. 2021, 46, 906-921.

Liu, Z. C.; Ruan, Y. M.; Li, F.; Zhang, G. F.; Zhao, M. Int J Hydrogen Energy. 2021, 46, 4201-4210.

Pluengphon, P.; Tsuppayakorn-aek, P.; Inceesungvorn, B. Int J Hydrogen Energy. 2020, 45, 25065-25074.

Downloads

Published

2024-04-26

Issue

Section

Regular Articles