DFT and Molecular Docking Studies of Melatonin and Some Analogues Interaction with Xanthine Oxidase as a Possible Antiradical Mechanism

Authors

  • Brenda Manzanilla Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta s/n, Gto. 36050 Guanajuato, México.
  • Minerva Martinez-Alfaro Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta s/n, Gto. 36050 Guanajuato, México. https://orcid.org/0000-0002-4874-3255
  • Juvencio Robles University of Guanajuato https://orcid.org/0000-0002-8702-5782

DOI:

https://doi.org/10.29356/jmcs.v68i1.2072

Keywords:

antiradical properties, Density Functional Theory, melatonin, xanthine oxidase, molecular docking

Abstract

Melatonin (Mel) and some of its active metabolites such as N1-acetyl-5-methoxykynuramine (AMK), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), 6-hydroxymelatonin (6OHM), and the analogues Ir and It recently designed by Galano's group, have been studied within density functional theory (DFT). The purpose is to evaluate some plausible mechanisms of action of melatonin's metabolites and analogues with the free radicals (FR): OH ̇, NO ̇2, HOO ̇, and CH3O͘ . We calculated global chemical reactivity descriptors from conceptual DFT to evaluate their antiradical properties. We used water and pentyl ethanoate as solvents to simulate the physiological conditions, modeled via the continuum solvation model based on density (SMD). We assess the following plausible mechanisms: single electrons transfer (SET), hydrogen atom transfer (HAT) and xanthine oxidase (XO) inhibition. We performed our calculations at the M06-2X/6-31+G* level of theory. The results indicate that Mel, AMK, AFMK, 6OHM, It, and Ir are good antiradicals towards the FRs: NO ̇2 and CH3O , while It and Ir could be suitable XO inhibitors.

Keywords: Antiradical properties; Density Functional Theory; melatonin; xanthine oxidase; molecular docking.

 

Resumen. La melatonina (Mel) y algunos de sus metabolitos activos como N1-acetil-5-metoxiquinuramina (AMK), N1-acetil-N2-formil-5-metoxiquinuramina (AFMK), 6-hidroximelatonina (6OHM) y los análogos Ir e It, diseñados recientemente por el grupo de Galano, han sido estudiados con la teoría de funcionales de la densidad (DFT). El propósito es evaluar algunos mecanismos de acción plausibles de los metabolitos y análogos de la melatonina con los radicales libres (FR):OH ̇, NO ̇2, HOO ̇ y CH3O ̇. Calculamos los descriptores de reactividad química global a partir de DFT conceptual para evaluar sus propiedades antirradicales. Usamos agua y etanoato de pentilo como solventes para simular las condiciones fisiológicas, modeladas a través del modelo continuo de solvatación basado en la densidad (SMD). Evaluamos los siguientes mecanismos plausibles: transferencia de electrones individuales (SET), transferencia de átomos de hidrógeno (HAT) e inhibición de la xantina oxidasa (XO). Realizamos nuestros cálculos al nivel de teoría M06-2X/6-31+G*. Los resultados indican que Mel, AMK, AFMK, 6OHM, It e Ir son buenos antirradicales frente a los FRs:  NO ̇2 y CH3O ̇, mientras que It e Ir podrían ser inhibidores adecuados de XO.

Downloads

Download data is not yet available.

Author Biographies

Brenda Manzanilla, Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta s/n, Gto. 36050 Guanajuato, México.

Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta s/n, Gto. 36050 Guanajuato, México.

Minerva Martinez-Alfaro, Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta s/n, Gto. 36050 Guanajuato, México.

Departamento de Farmacia, DCNE, Universidad de Guanajuato, Noria Alta s/n, Gto. 36050 Guanajuato, México.

Juvencio Robles, University of Guanajuato

            I am a full tenured Professor (Titular “C”) with the Faculty of Chemistry and Pharmacy at the University of Guanajuato, in México. My research interests are in Theoretical and computational chemistry and computer aided molecular design where I have pursued projects in the theory and applications of density functional theory and quantum chemistry to the study of the electronic structure of atoms, molecules, clusters and nanostructured materials. I teach courses in quantum chemistry, physics and physical chemistry at both graduate and undergraduate levels.

            I earned my B.S. in Chemistry from the Universidad Nacional Autónoma de México in 1981 and an M.A. and Ph.D. in theoretical chemistry in 1983 and 1986 respectively from the University of North Carolina at Chapel Hill, USA. I am included in the Distinguished Graduate Alumni list (2004) in occasion of the Graduate School’s Centennial of the University of North Carolina-Chapel Hill. I was a postdoctoral fellow in the Theoretical Physics group at the University of Valladolid (SPAIN). I joined the faculty of the Universidad Autónoma Metropolitana-Iztapalapa upon my return to México in 1987, where I stayed until October 1992, when I moved to the University of Guanajuato, (UG). At the UG, I am responsible of the Research Program in Theoretical and Computational Chemistry. I have presented 169 papers at national and international congresses and symposia. I have given 131 invited seminars and conferences and published 82 research papers in indexed scientific journals. Google Scholar reports 1287 citations to my scientific production and an h-index of 19 (sept.2016).

            I am a past recipient of the Cátedra Patrimonial de Excelencia Nivel II fellowship (CONACYT) and presently I hold the federal distinction of National Researcher level 3 (Sistema Nacional de Investigadores Nivel 3). I am a member of the Mexican Academy of Science (Academia Mexicana de Ciencias) and of the Mexican and the American Societies of Chemistry and Physics. Since 2004 I am a full member of the SIGMA XI Scientific Research Society (U.S.) I was a visiting professor during the summers of 1996 and 1998 at the Chemistry Department at Duke University, USA (Host: Prof. Weitao Yang). From September 2000 to August 2001, I was a visiting Professor in Sabbatical at the University of Girona, Spain, and in 2004 and in 2007 at the Department of Chemistry, PUC (Santiago, Chile) and in 2009-10 at the University of Valladolid, Spain. I have been President of the Theoretical Chemistry Division of the Mexican Chemical Society (2005-2009).

            At the University of Guanajuato I have been very interested in developing educational processes and programs. I have hold positions as Coordinator of the Chemistry undergraduate program, Coordinator of the Chemistry graduate program, participated in committees to design new academic programs curricula, appointed as Dean for academic affairs in the Chemistry Faculty area, member of the University Government Board (Junta Directiva), member of the Academic Advisory Board for the UG President (Consejo Academico Consultivo de Rectoría General) and in 2015 I was the UG Academic PROVOST (Secretario Academico).

References

Dharmaraja, A. T. J. Med. Chem. 2017, 60, 3221–3240. DOI: https://doi.org/10.1021/acs.jmedchem.6b01243.

Kostić, D. A.; Dimitrijević, D. S.; Stojanović, G. S.; Palić, I. R.; Đorđević, A. S.; Ickovski, J. D. J. Chem. 2015, 2015, 294858. DOI: https://doi.org/10.1155/2015/294858.

Giorgi, C.; Marchi, S.; Simoes, I. C. M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jędrak, P.; Pierzynowska, K.; et al. Chapter Six. in: Mitochondria and Longevity; López-Otín, C., Galluzzi, L. B. T.-I. R. of C. and M. B., Eds.; Academic Press, 2018; 340, 209–344 DOI: https://doi.org/https://doi.org/10.1016/bs.ircmb.2018.05.006.

Phaniendra, A.; Jestadi, D. B.; Periyasamy, L. Indian J. Clin. Biochem. 2015, 30, 11–26. DOI: https://doi.org/10.1007/s12291-014-0446-0.

Alkadi, H. Infect. Disord. Drug. Targets. 2020, 20, 16–26. DOI: https://doi.org/10.2174/1871526518666180628124323.

Oroian, M.; Escriche, I. Int. Food Res. J. 2015, 74, 10–36. DOI: https://doi.org/10.1016/j.foodres.2015.04.018.

Jamshidi-kia, F.; Wibowo, J. P.; Elachouri, M.; Masumi, R.; Salehifard-Jouneghani, A.; Abolhasanzadeh, Z.; Lorigooini, Z. J. Herbmed. Pharmacol. 2020, 9, 191–199. DOI: https://doi.org/10.34172/jhp.2020.25.

Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2011, 51, 1–16. DOI: https://doi.org/10.1111/j.1600-079X.2011.00916.x.

Galano, A. RSC Adv. 2016, 6, 22951–22963. DOI: https://doi.org/10.1039/c6ra00549g.

Poeggeler, B.; Saarela, S.; Reiter, R. J.; Tan, D. X.; Chen, L. D.; Manchester, L. C.; Barlow-Walden, L. R. Ann. N. Y. Acad. Sci. 1994, 738, 419–420. DOI: https://doi.org/10.1111/j.1749-6632.1994.tb21831.x.

Galano, A.; Reiter, R. J. J. Pineal Res. 2018, 65, e12514. DOI: https://doi.org/https://doi.org/10.1111/jpi.12514.

Álvarez-Diduk, R.; Galano, A.; Tan, D. X.; Reiter, R. J. Theor. Chem. Acc. 2016, 135, 38. DOI: https://doi.org/10.1007/s00214-015-1785-5.

Ramis, M. R.; Esteban, S.; Miralles, A.; Tan, D.-X.; Reiter, R. J. Curr. Med. Chem, 2015, 22, 2690–2711. DOI: https://doi.org/10.2174/0929867322666150619104143.

Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2013, 54, 245–257. DOI: https://doi.org/10.1111/jpi.12010.

Álvarez-Diduk, R.; Galano, A.; Tan, D. X.; Reiter, R. J. J. Phys. Chem. B. 2015, 119, 8535–8543. DOI: https://doi.org/10.1021/acs.jpcb.5b04920.

Hardeland, R. Endocrine. 2005, 27, 119–130. DOI: https://doi.org/10.1385/endo:27:2:119.

Costa, J. D.; Ramos, R. D.; Costa, K. D.; Brasil, D. D.; Silva, C. H.; Ferreira, E. F.; Borges, R. D.; Campos, J. M.; Macêdo, W. J.; Santos, C. B. Mol. 2018. DOI: https://doi.org/10.3390/molecules23112801.

Guerra-Vargas, M. A.; Rosales-Hernández, M. C.; Martínez-Fonseca, N.; Padilla-Martínez, I.; Fonseca-Sabater, Y.; Martínez-Ramos, F. Med. Chem. Res. 2018, 27, 1186–1197. DOI: https://doi.org/10.1007/s00044-018-2139-3.

Kaçmaz, A.; User, E. Y.; Şehirli, A. Ö.; Tilki, M.; Ozkan, S.; Şener, G. Surg. Today. 2005, 35, 744–750. DOI: https://doi.org/10.1007/s00595-005-3027-2.

Okutan, H.; Savas, C.; Delibas, N. Interact. Cardiovasc. Thorac. Surg. 2004, 3, 519–522. DOI: https://doi.org/10.1016/j.icvts.2004.05.005.

Juan, C. A.; Pérez de la Lastra, J. M.; Plou, F. J.; Pérez-Lebeña, E. Int. J. Mol. Sci. 2021. DOI: https://doi.org/10.3390/ijms22094642.

Teixeira, A.; Morfim, M. P.; de Cordova, C. A. S.; Charão, C. C. T.; de Lima, V. R.; Creczynski-Pasa, T. B. J. Pineal Res. 2003, 35, 262–268. DOI: https://doi.org/https://doi.org/10.1034/j.1600-079X.2003.00085.x.

Zhou, J.; Zhang, S.; Zhao, X.; Wei, T. J. Pineal Res. 2008, 45, 157–165. DOI: https://doi.org/https://doi.org/10.1111/j.1600-079X.2008.00570.x.

Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Galano, A. Theor. Chem. Acc. 2020, 139, 1–12. DOI: https://doi.org/10.1007/s00214-020-02641-9.

Reina, M.; Castañeda-Arriaga, R.; Perez-Gonzalez, A.; Guzman-Lopez, E. G.; Tan, D.-X.; Reiter, R. J.; Galano, A. Melatonin Res. 2018, 1, 27–58. DOI: https://doi.org/10.32794/mr11250003.

Galano, A.; Raúl Alvarez-Idaboy, J. Int. J. Quantum. Chem. 2019, 119, e25665. DOI: https://doi.org/10.1002/qua.25665.

Reina, M.; Martínez, A. Comput. Theor. Chem. 2018, 1123, 111–118. DOI: https://doi.org/https://doi.org/10.1016/j.comptc.2017.11.017.

Galano, A. Phys. Chem. Chem. Phys. 2011, 13, 7178–7188. DOI: https://doi.org/10.1039/c0cp02801k.

Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793–1874. DOI: https://doi.org/10.1021/cr990029p.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09. Revision C.01. Gaussian 09. Revision C.01, Gaussian, Inc, Wallingford CT. Gaussian, Inc.: Wallingford CT 2010.

Manzanilla, B.; Robles, J. J. Mol. Model. 2022, 28, 68. DOI: https://doi.org/10.1007/s00894-022-05056-4.

Cannington, P. H.; Ham, N. S. J. Electron. Spectrosc. Relat. Phenom. 1983, 32, 139–151. DOI: https://doi.org/10.1016/0368-2048(83)85092-0.

Marenich, A. V; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B. 2009, 113, 6378–6396. DOI: https://doi.org/10.1021/jp810292n.

Spartan, W. I. Spartan 08. Irvine, CA. 2008.

Halgren, T. A. J. Comput. Chem. 1996, 17, 490–519. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.

Halgren, T. A. J. Comput. Chem. 1996, 17, 520–552. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W.

Halgren, T. A. J. Comput. Chem. 1996, 17, 553–586. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T.

Halgren, T. A.; Nachbar, R. B. J. Comput. Chem. 1996, 17, 587–615. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q.

Ho, J.; Coote, M. L. Theor. Chem. Acc. 2009, 125, 3–21. DOI: https://doi.org/10.1007/s00214-009-0667-0.

Janak, J. F. Phys. Rev. B. 1978, 18, 7165–7168. DOI: https://doi.org/10.1103/PhysRevB.18.7165.

Casida, M. E. Phys. Rev. B. 1999, 59, 4694–4698. DOI: https://doi.org/10.1103/PhysRevB.59.4694.

Saha, B.; Bhattacharyya, P. K. RSC Adv. 2016, 6, 79768–79780. DOI: https://doi.org/10.1039/C6RA15016K.

Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI: https://doi.org/10.1021/ja00364a005.

Yang, W.; Parr, R. G. PNAS. 1985, 82, 6723–6726 DOI: https://doi.org/10.1073/pnas.82.20.6723.

Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049–4050. DOI: https://doi.org/10.1021/ja00326a036.

Gázquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A. 2007, 111, 1966–1970. DOI: https://doi.org/10.1021/jp065459f.

Duarte Ramos Matos, G.; Kyu, D. Y.; Loeffler, H. H.; Chodera, J. D.; Shirts, M. R.; Mobley, D. L. J. Chem. Eng. Data. 2017, 62,1559–1569. DOI: https://doi.org/10.1021/acs.jced.7b00104.

Leo, A. J. Chem. Rev. 1993, 93, 1281–1306. DOI: https://doi.org/10.1021/cr00020a001.

Spartan, W. I. Spartan 18. Irvine, CA. 2018.

Ghose, A. K.; Pritchett, A.; Crippen, G. M. J. Comput. Chem. 1988, 9, 80–90. DOI: https://doi.org/10.1002/jcc.540090111.

Martínez, A.; Vargas, R.; Galano, A. J. Phys. Chem. B. 2009, 113, 12113–12120. DOI: https://doi.org/10.1021/jp903958h.

Enroth, C.; Eger, B. T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E. F. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 10723–10728. DOI: https://doi.org/10.1073/pnas.97.20.10723.

Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785–2791. DOI: https://doi.org/10.1002/jcc.21256.

Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639–1662. DOI: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.

BIOVIA. Discovery Studio Visualizer. Dassault Systèmes: San Diego 2020.

Mahal, H. S.; Sharma, H. S.; Mukherjee, T. Free Radic. Biol. Med. 1999, 26, 557–565. DOI: https://doi.org/10.1016/s0891-5849(98)00226-3.

Galano, A. A. Theor. Chem. Acc. 2016, 135, 157. DOI: https://doi.org/10.1007/s00214-016-1917-6.

Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. Tetrahedron. 2002, 58, 4417–4423. DOI: https://doi.org/https://doi.org/10.1016/S0040-4020(02)00410-6.

Johns, J. R.; Platts, J. A. Org. Biomol. Chem. 2014, 12, 7820–7827. DOI: https://doi.org/10.1039/c4ob01396d.

Galano, A.; Tan, D. X.; Reiter, R. J. RSC Adv. 2014, 4, 5220–5227. DOI: https://doi.org/10.1039/c3ra44604b.

Romero, Y.; Martínez, A. J. Mol. Model. 2015, 21, 220. DOI: https://doi.org/10.1007/s00894-015-2773-3.

Chung, H. Y.; Baek, B. S.; Song, S. H.; Kim, M. S.; Huh, J. I.; Shim, K. H.; Kim, K. W.; Lee, K. H. Age (Omaha). 1997, 20, 127–140. DOI: https://doi.org/10.1007/s11357-997-0012-2.

Lin, H.-C.; Tsai, S.-H.; Chen, C.-S.; Chang, Y.-C.; Lee, C.-M.; Lai, Z.-Y.; Lin, C.-M. Biochem. Pharmacol. 2008, 75, 1416–1425. DOI: https://doi.org/10.1016/j.bcp.2007.11.023.

Kontoyianni, M.; McClellan, L. M.; Sokol, G. S. J. Med. Chem. 2004, 47, 558–565. DOI: https://doi.org/10.1021/jm0302997.

Chen, Y.; Gao, Y.; Wu, F.; Luo, X.; Ju, X.; Liu, G. New J. Chem. 2020, 44, 19276–19287. DOI: https://doi.org/10.1039/D0NJ03221B.

Shen, L.; Ji, H.-F. Bioorg. Med. Chem. Lett. 2009, 19, 5990–5993. DOI: https://doi.org/10.1016/j.bmcl.2009.09.076.

Fatima, I.; Zafar, H.; Khan, K. M.; Saad, S. M.; Javaid, S.; Perveen, S.; Choudhary, M. I. Bioorg. Chem. 2018, 79, 201–211. DOI: https://doi.org/10.1016/j.bioorg.2018.04.021.

Santi, M. D.; Paulino Zunini, M.; Vera, B.; Bouzidi, C.; Dumontet, V.; Abin-Carriquiry, A.; Grougnet, R.; Ortega, M. G. Eur. J. Org. Chem. 2018, 143, 577–582. DOI: https://doi.org/10.1016/j.ejmech.2017.11.071.

Downloads

Additional Files

Published

2024-01-01

Issue

Section

Special Issue dedicated to Prof. Joaquín Tamariz

Most read articles by the same author(s)