A Comparative Vibrational analysis, Electronic Properties, and molecular docking of Lantadene A and B (Potential anticancer agents) - A Computational DFT Study

Authors

  • Anoop Kumar Pandey
  • Shashwat Shukla
  • O. P. Yadav
  • Vijay Singh
  • Apoorva Dwivedi seth vishambhar nath institute of engineering and technology barabanki

DOI:

https://doi.org/10.29356/jmcs.v68i3.2060

Keywords:

Lantadene A & B, Vibrational analysis, DFT, HOMO-LUMO & MESP, Molecular Docking

Abstract

Abstract. We conducted a comprehensive analysis of Lantadene A and B using FTIR spectroscopy, beginning with geometry optimization. Subsequently, we calculated their fundamental vibrational frequencies and intensities using the B3LYP/6-311G (d, p) method. To provide a thorough vibrational assignment, we utilized potential energy distribution (PED). The results from our calculated spectra closely matched the experimental data, demonstrating the accuracy of our calculations. Furthermore, we assessed the electronic properties of Lantadene A and B. We computed the HOMO-LUMO gap and visualized the frontier orbital HOMO-LUMO surfaces, as well as Molecular Electrostatic Potential (MEP) surfaces. These analyses shed light on the reactive nature of these compounds, highlighting their potential applications. Moreover, our investigation explored the hyper-polarizability values, suggesting that Lantadene A and B hold promise for electro-optical applications due to their unique properties. Additionally, we conducted docking studies of Lantadene A and Lantadene B with BCL2L1 (BCL2 like 1) and IKBKB (inhibitor of nuclear factor kappa B kinase subunit beta) proteins, as provided by HGNC. These analyses revealed promising interactions, supporting the potential use of Lantadene A and B as agents with anti-cancer and anti-inflammatory properties. In summary, our research indicates that Lantadene A and B possess properties that make them strong candidates for use in the development of anticancer and anti-inflammatory agents, while also showing promise for electro-optical applications.

 

Resumen. Utilizando la espectroscopía de FTIR realizamos un análisis integral de lantadeno A y B, empezando con la optimización de sus geometrías. Después, calculamos las frecuencias e intensidades de vibración utilizando el método B3LYP/6-311G (d, p). Para realizar una asignación vibracional exhaustiva, utilizamos la distribución de energía potencial (PED). Los espectros calculados están en buen acuerdo con los experimentales, lo cual demuestra la precisión de nuestros cálculos. Además, evaluamos las propiedades electrónicas de lantadeno A y B. Calculamos la brecha (gap) HOMO-LUMO, visualizamos las isosuperficies de los orbitales frontera, y también las isosuperficies del potencial electrostático molecular (MEP). Estos análisis ayudan a esclarecer la reactividad de estas moléculas, destacando sus aplicaciones potenciales. Se exploraron los valores de las hiperpolizabilidades las cuales sugieren que el lantadeno A y B son compuestos prometedores para aplicaciones electroópticas. Adicionalmente, se realizaron estudios de acoplamiento molecular de lantadeno A y B con las proteínas BCL2L1 (BCL2 como 1) y IKBKB (inhibidor del factor kappa B de la subunidad beta quinasa), que se obtuvieron del HGNC. Estos análisis mostraron interacciones prometedoras, que apoyan el uso potencial de lantadeno A y B como agentes anticancerígenos y con propiedades antinflamatorias. En síntesis, nuestra investigación indica que las propiedades del lantadeno A y lantadeno B las hacen buenos candidatos para su uso en el desarrollo de agentes anticancerígenos y antinflamatorios, además de también mostrar potencial en aplicaciones electroópticas.

Downloads

Download data is not yet available.

References

Nadkami, A.K., Nadkami, K.M., Indian Materia Medica, Bombay Popular Prakashan, Bombay, 1976.

Guthikonda, R.N., Cama, L.D., Quesada, M., Woods, M.F., Salzmann, T.N., Christensen, B.G., Pure & Appl. Chem. 1987, 3, 455-458. DOI: http://dx.doi.org/10.1351/pac198759030455.

Ross, I. A., Medicinal plants of the world, Human Press, New Jersey, 1999. DOI: https://doi.org/10.1007/978-1-59259-365-1.

Kurian, A., K, Shankar M., Medicinal Plants-Horticulture Sciences, New India Publication Agency, India, 2007.

The Wealth of India. The Council of Scientific and Industrial Research, Ind Med Gaz. 1949, 84(10), 476–477. PMCID: PMC5189551.

Vasantha, P., Sukumar, N., Sharma, O. P., Acta Cryst. 1991, C47, 810-812.

Ghisalberti, E.L., Fitoterapia, 2000, 71, 467-485.DOI: http://doi.org/10.1016/s0367-326x(00)00202-1

Duke, J. A., Boca Raton, CRC Press, 1992.

Shashi, B.M., Niranjan, P.S., Subodh, K.R., Sharma, O.P., Tetrahedron, 1994, 50, 9439-9446. DOI: http://doi.org/10.1016/S0040-4020(01)85518-6.

O' Neill, M.J., Lewis, J.A., Noble, H.M., Holland, S., Mansat, C., Farthing, J.E., Foster, G., Noble, D., Lane, S.J., Sidebottom, P.J., Lynn, S.M., Hayes, M.V., Dix, C.J., J. Nat. Prod., 1998, 61, 1328- 1331. DOI: http://doi.org/10.1021/np970464j.

Uzcategui, B., Avila, D., Heberto, S.R., Quintero, L., Ortega, J., Gonzalez, Y.B., Investigacion Clinica, 2004, 45, 4.

Misra, N., Sharma, M., Raj K., Dangi, A., Srivastava, S., Misra, S., Parasitol. Res., 2007, 100, 439-448. DOI: http://doi.org/10.1007/s00436-006-0312-y.

Begum, S., Wahab, A., Siddiqui, B., Qamar, F., Chem. Pharm. Bull. 2003, 51, 134–137. DOI: http://doi.org/10.1248/cpb.51.134.

Zandi-Sohani, N., Hojjati, M., Carbonell, B., Angel, A., Chil. J. Agric. Res., 2012, 72, 502-506. DOI: http://dx.doi.org/10.4067/S0718-58392012000400007

Shamsee, Z. R., Al-Saffar, A.Z., Al-Shanon, A.F., Al-Obaidi, J.R., Mol. Biol. Rep., 2019, 46, 381-390. DOI: http://doi.org/10.1007/s11033-018-4482-3.

Inada, Nakanishi, T., Tokuda, H., Nishino, H., Iwashina, A., and Sharma, O. P., Planta. Med., 1995, 61, 558.

Inada, Nakanishi, T., Tokuda, H., Nishino, H., Iwashina, A., and Sharma, O. P., Planta. Med., 1997, 63, 272.

Nethaji, M., Rufes, C., Sadasivao, C., Pattashi, V. Sharma, O., J. Crystallogr. Spectrosc. Res., 1993, 6, 469 472.

Goswami, G. A., Sawant, N., Biosci. Biotechnol. Res. Asia, 2011, 2, 821-824. https://www.biotech-asia.org/?p=9684.

Sharma, M., Sharma, P., Bansal, M., Indian J. Pharmacol., 2007, 39,140-144.

Sharma, M., Dalal, R. Sharma, N, Design Nat. Prod. Res., 2011, 4, 387-396. DOI: http://doi.org?10.1080/14786411003792173.

Dwivedi, A., Srivastava, A. K., Bajpai, A., Spectrochim. Acta, Part A., 2015, 149, 343-351. DOI: https://doi.org/10.1016/j.saa.2015.04.042.

Dwivedi, A., Pandey, A. K., Raj, K., Misra, N., Spectrosc. Int. J., 2012, 3, 155-166. DOI: http://doi.org/10.1155/2012/486304.

Pandey, A. K., Siddiqui, S. A., Dwivedi, A., Raj, K., Misra, N., Spectrosc. Int. J., 2011, 25, 287-302. DOI: http://doi.org/10.3233/SPE-2011-0517.

A. K. Pandey, A. Dwivedi, N. Misra, Spectrosc. Int. J., 2013. Article ID 937915, 11 pages. DOI: https://doi.org/10.1155/2013/937915.

Dwivedi, A., Kumar, A. Polycyclic Aromat. Compd., 2021, 41, 387-399. DOI: https://doi.org/10.1080/10406638.2019.1591466.

Becke, A.D., J. Chem. Phys, 1993, 98, 5648-5652. DOI: https://doi.org/10.1063/1.464913.

Lee, C., Yang, W., Parr, R.G. Phys. Rev. B., 1988, 37, 785. DOI: https://doi.org/10.1103/PhysRevB.37.785.

Frisch, M. J., et al Gaussian 09; Gaussian, Inc., Pittsburgh, PA, 2009.

Fast, P.L., Corchado, J., Sanches, M.L., Truhlar D.G., J. Phys.Chem. A. 1999, 103, 3139-3143. DOI: https://doi.org/10.1021/jp9900382.

Frisch, A., Nelson, A.B., Holder, A.J., Gauss view, Inc.Pittsburgh PA, 2000.

Jamroz M. H., Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw (2004).

Andersson, M.P., Uvdal, P. J. Phys. Chem. A, 2005, 12, 2937–2941. DOI: https://doi.org/10.1021/jp045733a.

Colthup, N.B., Daly, L.H., Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1990.

Abraham, C.S., Muthu, S., Prasana, J.C., Armaković, S., Armaković, S.J., Geoffrey B., Spectrochim. Acta, Part A, 2019, 222, 117188. DOI: https://doi.org/10.1016/j.saa.2019.117188.

Thamarai, A., Vadamalar, R., Raja, M., Muthu, S., Narayana, B., Ramesh, P., R. Muhamed, R., Sevvanthi, S., Aayisha, S., Spectrochim. Acta, Part A, 2020, 226, 117609. DOI: https://doi.org/10.1016/j.saa.2019.117609.

Silverstein, R.M., Bassler, G.C., Morrill, T.C., Spectrometric Identification of Organic Compounds, 4th ed. John Wiley and Sons, New York, 1981.

Pulay, P., Fogarasi, G., Pang, F., Boggs, J.E., J. Am. Chem. Soc., 1979, 101, 2550–2560. DOI: https://doi.org/10.1021/ja00504a009.

Gutowski, M., Chalasinski, G., J. Chem. Phys. 1993, 98, 4540–4554.

Bose, S. C., Saleem, H., Erdogdu, Y., Rajarajan, G., Thanikachalam, V., Spectrochim. Acta, Part A, 2011, 82, 260–269. DOI: https://doi.org/10.1016/j.saa.2011.07.046.

Parr, R. G., Pearson, R.G., J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI: https://doi.org/10.1021/ja00364a005.

Geerlings, P., Proft, F. D., Langenaeker, W., Chem. Rev. 2003, 103, 1793–1874. DOI: https://doi.org/10.1021/cr990029p

Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E., J. Chem. Phys., 1978, 68, 3801. DOI: https://doi.org/10.1063/1.436185.

Komorowski, L., Chem . Phys., 1987, 114, 55.

Parr, R.G., Szentpály, L., Liu, S., J. Am. Chem. Soc., 1999, 121, 1922–1924.

Gadre, S.R., Pathak, R.K., J. Chem. Phys., 1990, 93, 1770–1774. DOI: https://doi.org/10.1063/1.459703.

Gadre, S.R., Shrivastava, I.H., J.Chem. Phys,. 1991, 94, 4384–4390. DOI: https://doi.org/10.1063/1.460625.

Murray J.S., Sen, K., Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam, 1996.

Alkorta I., Perez, J.J., Int. J. Quant. Chem. 1996, 57, 123–135. DOI: https://doi.org/10.1002/(SICI)1097-461X(1996)57:1<123::AID-QUA14>3.0.CO;2-9

Matta, I.F., Boyd, R.J., The Quantum Theory of Atoms in Molecules, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.

Koch, U., Popelier, P., J. Phys. Chem. A, 1995, 99, 9747-9754. DOI: https://doi.org/10.1021/j100024a016.

Carroll, M. T., Bader, R. F. W., Mol. Phys., 1988, 65, 695. DOI: http://doi.org/10.1080/00268978800101351.

Cremer, D., Kraka, E., Croat.Chem. Acta., 1984, 57, 1259–1281. DOI: https://hrcak.srce.hr/194019

Rozas, I., Alkorta, I., Elguero, J., J. Am. Chem. Soc., 2000, 122, 11154–11161. DOI: https://doi.org/10.1021/ja0017864.

Bader, R. F. W., Atoms in Molecules: A Quantum Theory (2nd ed.) Oxford: New York, NY. 1990

Erdogdu, Y., Unsalan, O., Gulluoglu, M.T., J. Raman Spectrosc., 2010, 41, 820-828. DOI: https://doi.org/10.1002/jrs.2520

Erdogdu, Y., Unsalan, O., Amalanathan, M., Hubert, J. I., J. Mol. Struct., 2010, 980, 24-30. DOI: https://doi.org/10.1016/j.molstruc.2010.06.032

Gonohe, N., Abe, H., Mikami, N., Ito, M., J. Phys. Chem., 1985, 89, 3642-3648. DOI: https://doi.org/10.1016/0009-2614(83)85053-2

Alyar, H., Kantarci, Z., Bahat, M., Kasap, E., J. Mol. Struct., 2007, 834, 516-520. DOI: http://doi.org/10.1016/j.molstruc.2006.11.066.

Padrón, J.A., Carasco, R., Pellón, R.F., J. Pharm. Pharmaceut. Sci., 2002, 5, 258–266.

Verma, R.P., Hansch, C., Bioorg. Med. Chem., 2005, 13 2355–2372. Doi: https://doi.org/10.1016/j.bmc.2007.01.011.

Verma, R.P., Kurup, A., Hansch, C., Bioorg. Med. Chem., 2005, 13, 237–255. DOI: https://doi.org/10.1016/j.bmc.2004.09.039

Vuks, M.F., Opt. Spectrosc., 1966, 20, 361-368.

Kumar, A., Srivastava, A.K., Tiwari, S.N., Misra, N., Sharma, D., Mol. Cryst. Liq. Cryst., 2019, 1, 23–31.

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., J. Comput. Chem., 2009, 16, 2785–2791. DOI: https://doi.org/10.1002/jcc.21256

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., J. Comput. Chem. 2004, 25, 1605–1612. DOI: http://doi.org/10.1002/jcc.20084

Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., J. Comput. Chem., 1998, 19, 1639–1662. DOI: https://doi.org/10.1002/(SICI)1096987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B.

Discovery Studio 4.5 Guide, Accelrys Inc., San Diego, 2009. http://www. accelrys.com

Oost, M., Belli, T.K., Ding, B.A., Joseph, H., Kunzer, M.K., Martineau, A., McClellan, D., Mitten, W.J., et.al, J. Med. Chem., 2007, 50, 641-662. https://files.rcsb.org/view/2O2M.cif.

Swain, S.S., Singh, S.R., Sahoo, A., Hussain, T., Pati, S., J. Biomol. Struc. Dyn., 2021, 40, 6463–6476.

www.swissdock.ch

Sillars-Hardebol, A. H., Carvalho, B., Beliën, J., Wit, M., Delis-van P. M. et. al., The Journal of pathology, 2012, 226, 3, 442-450. DOI: http://doi.org/10.1002/path.2983

Kvansakul, M., Hinds, M.G., Banjara, S., Biochem. J., 2020, 477, 3287- 3297.

https://files.rcsb.org/view/6WH0.cif.

https://files.rcsb.org/view/6WGZ.

Herrmann, O., Baumann, B., de Lorenzi, R., Muhammad, S., Zhang, W., Kleesiek, J., et al. Nat. Med., 2005, 12, 1322–9. DOI: http://doi.org/10.1038/nm1323.

Llona-Minguez, S., Baiget, J., Mackay, S.P., Pharm. Pat. Anal. 2013, 4, 481-498. DOI: https://doi.org/10.4155/ppa.13.31.

Liu, S., Misquitta, Y.R., Olland, A., Johnson, M.A., Kelleher, K.S., Kriz, R., Lin, L.L., Stahl, M., Mosyak, L. J Biol. Chem., 2013, 288, 22758-22767. https://www.rcsb.org/structure/4KIK

Xu, G., Lo, Y.C., Li, Q., Napolitano, G., Wu, X., Jiang, X., Dreano, M., Karin, M., Wu, H., Nature, 2011, 472, 325-330. https://www.rcsb.org/structure/3rzf

Downloads

Published

2024-05-13

Issue

Section

Regular Articles