Electrochemistry for Solar Energy Conversion Systems: A Selection of Mexican Contributions

Authors

DOI:

https://doi.org/10.29356/jmcs.v67i4.2048

Keywords:

Electrodeposition, thermosolar systems, dye-sensitized solar cells, electrochemistry, solar energy

Abstract

Abstract. Electrochemistry is a key technology to synthesize, study and scale-up materials and processes for applications in solar energy conversion systems. Mexico has had a tradition of excellence in electrochemistry research and methodology development, and this paper intends to honor some of the key contributors in the subjects of solar energy conversion to useful heat or electricity. We summarize the use of electrochemical techniques as a tool for the deposition and characterization, including the analysis of electrodeposition solutions and deposition mechanisms. In addition, we describe the use of electrodeposited and hybrid ZnO films for application in dye-sensitized solar cells, which are photoelectrochemical systems, and discuss the mechanisms that govern solar cell performance.

 

Resumen. La electroquímica es una tecnología clave para sintetizar, estudiar y escalar materiales y procesos para aplicaciones en sistemas de conversión de energía solar. México ha tenido una tradición de excelencia en la investigación y el desarrollo de metodologías electroquímicas, y este documento tiene la intención de honrar a algunos de los principales contribuyentes en los temas de conversión de energía solar en calor o electricidad útil. Resumimos el uso de técnicas electroquímicas como herramienta para la deposición y caracterización, incluyendo el análisis de soluciones de electrodepósito y mecanismos de deposición. Además, se describe el uso de películas de ZnO híbridas y electrodepositadas para su aplicación en celdas solares sensibilizadas con tinte, que son sistemas fotoelectroquímicos, y discutimos los mecanismos que gobiernan el rendimiento de las celdas solares.

Downloads

Download data is not yet available.

Author Biographies

Francisco Ivan Lizama-Tzec, CINVESTAV-Mérida

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Manuel Rodríguez-Pérez, Universidad Autónoma de Campeche

Facultad de Ingeniería, Universidad Autónoma de Campeche-Campus V, C.P.24085, San Francisco de Campeche, México.

Alberto Vega-Poot, CINVESTAV-Mérida

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Universidad Modelo, Carretera a Cholul, Mérida, Yucatán México.

Dallely Melissa Herrera-Zamora, Instituto de Energías Renovables de la Universidad Nacional Autónoma de México (IER-UNAM)

Instituto de Energías Renovables de la Universidad Nacional Autónoma de México (IER-UNAM), Privada Xochicalco s/n Temixco, Morelos 62580, México.

Manuel Alejandro Estrella-Gutiérrez, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán

Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km 33.5,

Esdras Canto-Aguilar, Department of Physics, Umeå University

Department of Physics, Umeå University, SE-90187 Umeå, Sweden.

Marco Cetina-Dorantes, Department of Applied Physics, CINVESTAV-IPN

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Gerko Oskam, Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, 41013, Spain

References

Khalil, A.; Khaira, A. M.; Abu-Shanab, R. H.; Abdelgaied, M. A. Sol. Energy. 2023, 253, 154–174. DOI: https://doi.org/10.1016/j.solener.2023.02.032.

Abdalla, A. N.; Jing, W.; Nazir, M. S.; Jiang, M.; Tao, H. in: Socio-Economic Impacts of Solar Energy Technologies for Sustainable Green Energy: A Review; Springer Netherlands, 2022. DOI: https://doi.org/10.1007/s10668-022-02654-3.

Kennedy, C. E. Natl. Renew. Energy Lab. 2002, 1-53.

Trejo, G.; Ruiz, H.; Borges, R. O.; Meas, Y. J. Appl. Electrochem. 2001, 31, 685–692. DOI: https://doi.org/10.1023/A:1017580025961.

Soto, A. B.; Arce, E. M.; Palomar-Pardavé, M.; González, I. Electrochim. Acta. 1996, 41, 2647–2655. DOI: https://doi.org/10.1016/0013-4686(96)00088-6.

Ibanez, J. G.; Ibanez, J. G.; Choi, C.; Becker, R. S. J. Electrochem. Soc. 1987, 134, 3083–3089. DOI: https://doi.org/10.1149/1.2100344.

Liu, H.; Zhao, X.; Yang, Y.; Li, Q.; Lv, J. Adv. Mater. 2008, 20, 2050–2054. DOI: https://doi.org/10.1002/adma.200702624.

Vullum, F.; Teeters, D. J. Power Sources. 2005, 146, 804–808. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.086.

Lizama-Tzec, F. I.; Frutis, A.; Gattorno, G.; Oskam, G. J. New Mater. Electrochem. Syst. 2013, 16, 209–215. DOI: https://doi.org/10.14447/jnmes.v16i3.20.

Lizama-Tzec, F. I.; Canché-Canul, L.; Oskam, G. Electrochim. Acta. 2011, 56, 9391–9396. DOI: https://doi.org/10.1016/j.electacta.2011.08.023.

Herderick, E. D.; Reddy, K. M.; Sample, R. N.; Draskovic, T. I.; Padture, N. P. Appl. Phys. Lett. 2009, 95, 1–4. DOI: https://doi.org/10.1063/1.3263733.

Barrera, E.; González, I.; Viveros, T. Sol. Energy Mater. Sol. Cells. 1998, 51, 69–82. DOI: https://doi.org/10.1016/S0927-0248(97)00209-2.

Lizama-Tzec, F. I.; Macías, J. D.; Estrella-Gutiérrez, M. A.; Cahue-López, A. C.; Arés, O.; de Coss, R.; Alvarado-Gil, J. J.; Oskam, G. J. Mater. Sci. Mater. Electron. 2015, 26, 5553-5561. DOI: https://doi.org/10.1007/s10854-014-2195-5.

Ortiz, Z. I.; Díaz-Arista, P.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Corros. Sci. 2009, 51, 2703–2715. DOI: https://doi.org/10.1016/j.corsci.2009.07.002.

Trejo, G.; Ortega, R.; Meas, Y.; Chainet, E.; Ozil, P. J. Appl. Electrochem. 2003, 33, 373–379. DOI: https://doi.org/10.1023/A:1024466604939.

Rivas-Esquivel, F. M.; Brisard, G. M.; Ortega-Borges, R.; Trejo, G.; Escobedo, P. Int. J. Electrochem. Sci 2017, 12, 2026–2041. DOI: https://doi.org/10.20964/2017.03.58.

17. Luis Ortiz-Aparicio, J.; Meas, Y.; Trejo, G.; Ortega, R.; Chapman, T. W.; Chainet, E. J Appl Electrochem 2013, 43, 289–300. DOI: https://doi.org/10.1007/s10800-012-0518-x.

Duffie, J. A.; Beckman, W. A.; Worek, W. M., in: Solar Engineering of Thermal Processes, 1994, 67-70.

Xiao, X.; Miao, L.; Xu, G.; Lu, L.; Su, Z.; Wang, N.; Tanemura, S. Appl. Surf. Sci. 2011, 257, 10729–10736. DOI: https://doi.org/10.1016/j.apsusc.2011.07.088.

Garcia-Valladares, O.; Figueroa, I. P., in: Aplicaciones Térmicas de La Energía Solar, 2017, 1-156.

Esposito, S.; Antonaia, A.; Addonizio, M. L.; Aprea, S. Thin Solid Films. 2009, 517, 6000–6006. DOI: https://doi.org/10.1016/j.tsf.2009.03.191.

Selvakumar, N.; Barshilia, H. C. Sol. Energy Mater. Sol. Cells. 2012, 98, 1–23. DOI: https://doi.org/10.1016/j.solmat.2011.10.028.

Salmi, J.; Bonino, J. P.; Bes, R. S. J. Mater. Sci. 2000, 35, 1347–1351. DOI: https://doi.org/10.1023/A:1004773821962.

Klochko, N. P.; Klepikova, K. S.; Tyukhov, I. I.; Myagchenko, Y. O.; Melnychuk, E. E.; Kopach, V. R.; Khrypunov, G. S.; Lyubov, V. M.; Kopach, A. V.; Starikov, V. V.; Kirichenko, M. V. Sol. Energy. 2015, 117, 1–9. DOI: https://doi.org/10.1016/j.solener.2015.03.047.

Koltun, M.; Gukhman, G.; Gavrilina, A. Sol. Energy Mater. Sol. Cells. 1994, 33, 41–44. DOI: https://doi.org/10.1016/0927-0248(94)90287-9.

Shawki, S.; Mikhail, S. Mater. Manuf. Process. 2000, 15, 737–746. DOI: https://doi.org/10.1080/10426910008913017.

John, S. Met. Finish. 1997, 95, 84–86. DOI: https://doi.org/10.1016/S0026-0576(97)88982-9.

Estrella-Gutiérrez, M. A.; Lizama-Tzec, F. I.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta 2016, 213, 460–468. DOI: https://doi.org/10.1016/j.electacta.2016.07.125.

Lizama-Tzec, F. I.; Manterola-Villanueva, G.; García-Valladares, O.; Herrera-Zamora, D. M.; Oskam, G.; Rodríguez-Gattorno, G. J. Energy, Eng. Optim. Sustain. 2023, 7, 49-62. DOI: 10.19136/jeeos.a7n2.5677.

Herrera-Zamora, D. M.; Lizama-Tzec, F. I.; Santos-González, I.; Rodríguez-Carvajal, R. A.; García-Valladares, O.; Arés-Muzio, O.; Oskam, G. Sol. Energy. 2020, 207, 1132–1145. DOI: https://doi.org/10.1016/j.solener.2020.07.042.

Smith, G. B.; Ignatiev, A.; Zajac, G. J. Appl. Phys. 1980, 51, 4186–4196. DOI: https://doi.org/10.1063/1.328276.

Prakash, E. S.; Madhukeshwaran, N. Int. J. Energy Environ. 2012, 3, 2076-2909.

Kruidhof, W.; van der Leij, M. Sol. Energy Mater. Sol. Cells. 1979, 2, 69–79.

Barrera, E.; Pardavé, M. P.; Batina, N.; González, I. J. Electrochem. Soc. 2000, 147, 1787-1796. DOI: https://doi.org/10.1149/1.1393435.

Barrera, C. E.; Salgado, L.; Morales, U.; González, I. Renew. Energy. 2001, 24, 357–364. DOI: https://doi.org/10.1016/S0960-1481(01)00017-9.

John, S.; Nagarani, N.; Rajendran, S. Sol. Energy Mater. 1991, 22, 293–302. DOI: https://doi.org/10.1016/0165-1633(91)90036-K.

Domínguez-Crespo, M. A.; Plata-Torres, M.; Torres-Huerta, A. M.; Arce-Estrada, E. M.; Hallen-López, J. M. Mater. Charact. 2005, 55, 83–91. DOI: https://doi.org/10.1016/j.matchar.2005.03.003.

Palomar-Pardavé, M.; Aldana-González, J.; Botello, L. E.; Arce-Estrada, E. M.; Ramírez-Silva, M. T.; Mostany, J.; Romero-Romo, M. Electrochim. Acta. 2017, 241, 162–169. DOI: https://doi.org/10.1016/j.electacta.2017.04.126.

Landa-Castro, M.; Aldana-González, J.; Montes de Oca-Yemha, M. G.; Romero-Romo, M.; Arce-Estrada, E. M.; Palomar-Pardavé, M. J. Alloys Compd. 2020, 830, 1–9. DOI: https://doi.org/10.1016/j.jallcom.2020.154650.

Manh, T. Le; Arce-Estrada, E. M.; Mejía-Caballero, I.; Aldana-González, J.; Romero-Romo, M.; Palomar-Pardavé, M. J. Electrochem. Soc. 2018, 165, D285–D290. DOI: https://doi.org/10.1149/2.0941807jes.

Palomar-Pardavé, M.; González, I.; Soto, A. B.; Arce, E. M. J. Electroanal. Chem. 1998, 443, 125–136. DOI: https://doi.org/10.1016/S0022-0728(97)00496-8.

Barrera, C. E.; Lara, V. H.; Viveros, G. T.; González, M. I. Surf. Eng. 2000, 16, 50–53. DOI: https://doi.org/10.1179/026708400322911528.

Toghdori, G.; Rozati, S. M.; Memarian, N.; Arvand, M.; Bina, M. H. Proceedings of the World Renewable Energy Congress – Sweden, 2011, 57, 4021–4026. DOI: https://doi.org/10.3384/ecp110574021.

Vitt, B. Sol. Energy Mater. 1986, 13, 323–350. DOI: https://doi.org/10.1016/0165-1633(86)90082-1.

Vitt, B. Sol. Collect. 1987, 43, 244–252.

Rodriguez-Valadez, F.; Ortiz-Éxiga, C.; Ibanez, J. G.; Alatorre-Ordaz, A.; Gutierrez-Granados, S. Environ. Sci. Technol. 2005, 39, 1875–1879. DOI: https://doi.org/10.1021/es049091g.

Morales, U.; Meas, Y.; Poillerat, G. C. R. Seances Acad. Sci. 1984, 298, 117–119.

Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Archer, J.; John, C. Trans. Inst. Met. Finish. 2004, 82, 14–17. DOI: https://doi.org/10.1080/00202967.2004.11871547.

Ritchie, I. T.; Sharma, S. K.; Valignat, J.; Spitz, J. Sol. Energy Mater. 1979, 2, 167–176. DOI: https://doi.org/10.1016/0165-1633(79)90016-9.

Spitz, J.; Van Danh, T.; Aubert, A. Sol. Energy Mater. 1979, 1, 189–200. DOI: https://doi.org/10.1016/0165-1633(79)90037-6.

Raghunathan, K. Second Annu. Conf. Absorber Surfaces Sol. Receiv. 1979, 222.

Pettit, R. B.; Sowell, R. R.; Hall, I. J. Sol. Energy Mater. 1982, 7, 153–170. DOI: https://doi.org/10.1016/0165-1633(82)90081-8.

Xu, C.; Wang, X.; Liu, J. ACS Appl. Mater. Interfaces. 2022, 14, 33211-33218. DOI: https://doi.org/10.1021/acsami.2c07469.

Cetina-Dorantes, M.; Lizama-Tzec, F. I.; Estrella-Gutiérrez, M. A.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta. 2021, 391, 11–17. DOI: https://doi.org/10.1016/j.electacta.2021.138906.

Uma, C. S.; Malhotra, L. K.; Chopra, K. L. Bull. Mater. Sci. 1986, 8, 385–389. DOI: https://doi.org/10.1007/BF02744150.

Asadi, M.; Rozati, S. M. Mater. Sci. Pol. 2017, 35, 355–361. DOI: https://doi.org/10.1515/msp-2017-0054.

Lizama-Tzec, F. I.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Gómez-Espinoza, V. H.; Santos-González, I.; Cetina-Dorantes, M.; Vega-Poot, A. G.; García-Valladares, O.; Oskam, G. Sol. Energy, 2019, 194, 302–310. DOI: https://doi.org/10.1016/j.solener.2019.10.066.

Macdonald, G. Thin Solid Films. 1980, 72, 83–87.

Wang, X.; Lee, E.; Xu, C.; Liu, J. Mater. Today Energy. 2021, 19, 100609. DOI: https://doi.org/10.1016/j.mtener.2020.100609.

Pethkar, S.; Takwale, M. G.; Agashe, C.; Bhide, V. G. Sol. Energy Mater. Sol. Cells 1993, 31, 109–117DOI: https://doi.org/10.1016/0927-0248(93)90044-4.

Geetha Priyadarshini, B.; Aich, S.; Chakraborty, M. J. Mater. Sci. 2011, 46, 2860–2873. DOI: https://doi.org/10.1007/s10853-010-5160-6.

Müller, S.; Giovannetti, F.; Reineke-Koch, R.; Kastner, O.; Hafner, B. Sol. Energy. 2019, 188, 865–874. DOI: https://doi.org/10.1016/j.solener.2019.06.064.

Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. Renew. Energy. 2012, 39, 293–298. DOI: https://doi.org/10.1016/j.renene.2011.08.056.

Moss, R. W.; Henshall, P.; Arya, F.; Shire, G. S. F.; Eames, P. C.; Hyde, T. Sol. Energy. 2018, 164, 109–118. DOI: https://doi.org/10.1016/j.solener.2018.02.004.

Sakhaei, S. A.; Valipour, M. S. J. Therm. Anal. Calorim. 2020, 140, 1597–1610. DOI: https://doi.org/10.1007/s10973-019-09148-x.

Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F. T.; Vlachopoulos, N.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Nat. 2023, 613, 60-65. DOI: https://doi.org/10.1038/s41586-022-05460-z.

Pérez-González, M.; Tomás, S. A.; Santoyo-Salazar, J.; Gallardo-Hernández, S.; Tellez-Cruz, M. M.; Solorza-Feria, O. J. Alloys Compd. 2019, 779, 908–917.DOI: https://doi.org/10.1016/J.JALLCOM.2018.11.302.

Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater. 2009, 21, 4087–4108. DOI: https://doi.org/10.1002/adma.200803827.

Natsume, Y.; Sakata, H. Thin Solid Films. 2000, 372, 30–36. DOI: https://doi.org/10.1016/S0040-6090(00)01056-7.

Ramírez-Ortega, D.; Meléndez, A. M.; Acevedo-Peña, P.; González, I.; Arroyo, R. Electrochim. Acta. 2014, 140, 541–549. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2014.06.060.

Lopez, T.; Sanchez, E.; Bosch, P.; Meas, Y.; Gomez, R. Mater. Chem. Phys. 1992, 32, 141–152. DOI: https://doi.org/10.1016/0254-0584(92)90270-I.

Chen, Z.; Tang, Y.; Zhang, L.; Luo, L. Electrochim. Acta. 2006, 51, 5870–5875. DOI: https://doi.org/10.1016/J.ELECTACTA.2006.03.026.

Canava, B.; Lincot, D. J. Appl. Electrochem. 2000, 30, 711–716.

Yu, J.; Yu, X. Environ. Sci. Technol. 2008, 42, 4902–4907. DOI: https://doi.org/10.1021/ES800036N/SUPPL_FILE/ES800036N-FILE003.PDF.

Pandey, P.; Kurchania, R.; Haque, F. Z. Optik (Stuttg). 2015, 126, 301–303. DOI: https://doi.org/10.1016/J.IJLEO.2014.08.160.

Kolodziejczak-Radzimska, A.; Jesionowski, T. Mater. 2014, 7, 2833-2881. DOI: https://doi.org/10.3390/MA7042833.

Maldonado, M.; Vega-Pérez, J.; Solorza-Feria, Mater. Sci. Eng. B. 2010, 174, 42–45. DOI: https://doi.org/10.1016/J.MSEB.2010.03.074.

Maldonado, A.; Asomoza, R.; Cañetas-Ortega, J.; Zironi, E. P.; Hernández, R.; Patiño, R.; Solorza-Feria, O. Sol. Energy Mater. Sol. Cells. 1999, 57, 331–344. DOI: https://doi.org/https://doi.org/10.1016/S0927-0248(98)00170-6.

Ortiz-Aparicio, J. L.; Meas, Y.; Chapman, T. W.; Trejo, G.; Ortega, R.; Chainet, E. J. Appl. Electrochem. 2015, 45, 67–78. DOI: https://doi.org/10.1007/S10800-014 07779/FIGURES/6.

Rodríguez-Pérez, M.; Canto-Aguilar, E. J.; García-Rodríguez, R.; De Denko, A. T.; Oskam, G.; Osterloh, F. E. J. Phys. Chem. C. 2018, 122, 2582–2588. DOI: https://doi.org/10.1021/ACS.JPCC.7B11727/SUPPL_FILE/JP7B11727_SI_001.PDF.

Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Electrochim. Acta. 2007, 52, 3686–3696. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2006.10.042.

Yoshida, T.; Komatsu, D.; Shimokawa, N.; Minoura, H. Thin Solid Films. 2004, 451, 166–169. DOI: https://doi.org/10.1016/j.tsf.2003.10.097.

Chang, G. J.; Lin, S. Y.; Wu, J. J. Nanoscale. 2014, 6, 1329–1334. DOI: https://doi.org/10.1039/c3nr05267b.

Zi, M.; Zhu, M.; Chen, L.; Wei, H.; Yang, X.; Cao, B. Ceram. Int. 2014, 40, 7965–7970. DOI: https://doi.org/10.1016/j.ceramint.2013.12.146.

Nunes, V. F.; Souza, A. P. S.; Lima, F.; Oliveira, G.; Freire, F. N.; Almeida, A. F. Mater. Res. 2018, 21, 1–8. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2017-0990.

Lima, F. A. S.; Vasconcelos, I. F.; Lira-Cantu, M. Ceram. Int. 2015, 41, 9314–9320. DOI: https://doi.org/https://doi.org/10.1016/j.ceramint.2015.03.271.

Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T.; Minoura, H. Solid State Ionics. 2002, 151, 19–27. DOI: https://doi.org/https://doi.org/10.1016/S0167-2738(02)00599-4.

Gaikwad, M. A.; Suryawanshi, M. P.; Maldar, P. S.; Dongale, T. D.; Moholkar, A. V. Opt. Mater. 2018, 78, 325–334. DOI: https://doi.org/https://doi.org/10.1016/j.optmat.2018.02.040.

Marimuthu, T.; Anandhan, ·N; Thangamuthu, ·R; Surya, ·S. J. Mater. Sci. Mater. Electron. 2018, 29, 12830–12841. DOI: https://doi.org/10.1007/s10854-018-9402-8.

Linn, Y.; Yang, J.; Meng, Y. Ceram. Int. 2013, 39, 5049–5052.

Şişman, İ.; Can, M.; Ergezen, B.; Biçer, M. RSC Adv. 2015, 5, 73692–73698. DOI: https://doi.org/10.1039/C5RA13623G.

Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Lai, Y.-H.; Vittal, R.; Ho, K.-C. Prog. Photovoltaics Res. Appl. 2014, 22, 440–451. DOI: https://doi.org/https://doi.org/10.1002/pip.2288.

Canto-Aguilar, E. J.; González-Flores, C. A.; Peralta-Domínguez, D.; Andres-Castán, J. M.; Demadrille, R.; Rodríguez-Pérez, M.; Oskam, G. J. Electrochem. Soc. 2022, 169, 42504. DOI: https://doi.org/10.1149/1945-7111/ac62c8.

Minoura, H.; Yoshida, T. Electrochemistry. 2008, 76, 109–117. DOI: https://doi.org/10.5796/electrochemistry.76.109.

Canto-Aguilar, E. J.; Rodríguez-Pérez, M.; García-Rodríguez, R.; Lizama-Tzec, F. I.; De Denko, A. T.; Osterloh, F. E.; Oskam, G. Electrochim. Acta. 2017, 258, 396–404. DOI: https://doi.org/10.1016/J.ELECTACTA.2017.11.075.

Bittner, F.; Oekermann, T.; Wark, M. Materials. 2018, 11, 232. DOI: https://doi.org/10.3390/ma11020232.

Omar, A.; Abdullah, H. Renew. Sustain. Energy Rev. 2014, 31, 149–157. DOI: https://doi.org/10.1016/j.rser.2013.11.031.

Sarker, S.; Seo, H. W.; Kim, D. M. J. Power Sources. 2014, 248, 739–744. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.101.

Vega-Poot, A. G.; Macias-Montero, M.; Barranco, A.; Borras, A.; Gonzalez-Elipe, A. R.; Oskam, G.; Anta, J. A. Energy Environ. Focus. 2013, 2, 270–276. DOI: https://doi.org/10.1166/eef.2013.1062.

Pourjafari, D.; Oskam, G. Nanomater. Sol. Cell Appl. 2019, 145-204. DOI: https://doi.org/10.1016/B978-0-12-813337-8.00006-0.

Guillén, E.; Peter, L. M.; Anta, J. A. J. Phys. Chem. C 2011, 115, 22622–22632.

Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, M.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 558–562. DOI: https://doi.org/10.1021/ja805850q.

Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360–5364. DOI: https://doi.org/10.1039/b310907k.

Vega-Poot, A. G.; Macías-Montero, M.; Idígoras, J.; Borrás, A.; Barranco, A.; Gonzalez-Elipe, A. R.; Lizama-Tzec, F. I.; Oskam, G.; Anta, J. A. ChemPhysChem. 2014, 15, 1088–1097. DOI: https://doi.org/10.1002/cphc.201301068.

Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H. Superlattices Microstruct. 2016, 96, 82–94. DOI: https://doi.org/10.1016/j.spmi.2016.05.012.

Bisquert, J. J. Phys. Chem. B. 2002, 106, 325–333. DOI: https://doi.org/10.1021/jp011941g.

Mohammadpour, R.; Zad, A. I.; Hagfeldt, A.; Boschloo, G. ChemPhysChem. 2010, 11, 2140–2145. DOI: https://doi.org/10.1002/cphc.201000125.

Lee, K. M.; Lee, E. S.; Yoo, B.; Shin, D. H. Electrochim. Acta. 2013, 109, 181–186. DOI: https://doi.org/10.1016/j.electacta.2013.07.055.

Wang, H.; Wei, W.; Hu, Y. H. J. Mater. Chem. A. 2013, 1, 6622–6628. DOI: https://doi.org/10.1039/C3TA10892A.

Pauporté, T.; Magne, C. Thin Solid Films. 2014, 560, 20–26. DOI: https://doi.org/10.1016/j.tsf.2013.11.121.

Lizama-Tzec, F. I.; García-Rodríguez, R.; Rodríguez-Gattorno, G.; Canto-Aguilar, E. J.; Vega-Poot, A. G.; Heredia-Cervera, B. E.; Villanueva-Cab, J.; Morales-Flores, N.; Pal, U.; Oskam, G. RSC Adv. 2016, 6, 37424–37433. DOI: https://doi.org/10.1039/c5ra25618f.

Pérez-Hernández, G.; Vega-Poot, A.; Pérez-Juárez, I.; Camacho, J. M.; Arés, O.; Rejón, V.; Peña, J. L.; Oskam, G. Sol. Energy Mater. Sol. Cells. 2012, 100, 21–26. DOI: https://doi.org/10.1016/j.solmat.2011.05.012.

Downloads

Published

2023-09-19

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI