Electrochemistry for Solar Energy Conversion Systems: A Selection of Mexican Contributions
DOI:
https://doi.org/10.29356/jmcs.v67i4.2048Keywords:
Electrodeposition, thermosolar systems, dye-sensitized solar cells, electrochemistry, solar energyAbstract
Abstract. Electrochemistry is a key technology to synthesize, study and scale-up materials and processes for applications in solar energy conversion systems. Mexico has had a tradition of excellence in electrochemistry research and methodology development, and this paper intends to honor some of the key contributors in the subjects of solar energy conversion to useful heat or electricity. We summarize the use of electrochemical techniques as a tool for the deposition and characterization, including the analysis of electrodeposition solutions and deposition mechanisms. In addition, we describe the use of electrodeposited and hybrid ZnO films for application in dye-sensitized solar cells, which are photoelectrochemical systems, and discuss the mechanisms that govern solar cell performance.
Resumen. La electroquímica es una tecnología clave para sintetizar, estudiar y escalar materiales y procesos para aplicaciones en sistemas de conversión de energía solar. México ha tenido una tradición de excelencia en la investigación y el desarrollo de metodologías electroquímicas, y este documento tiene la intención de honrar a algunos de los principales contribuyentes en los temas de conversión de energía solar en calor o electricidad útil. Resumimos el uso de técnicas electroquímicas como herramienta para la deposición y caracterización, incluyendo el análisis de soluciones de electrodepósito y mecanismos de deposición. Además, se describe el uso de películas de ZnO híbridas y electrodepositadas para su aplicación en celdas solares sensibilizadas con tinte, que son sistemas fotoelectroquímicos, y discutimos los mecanismos que gobiernan el rendimiento de las celdas solares.
Downloads
References
Khalil, A.; Khaira, A. M.; Abu-Shanab, R. H.; Abdelgaied, M. A. Sol. Energy. 2023, 253, 154–174. DOI: https://doi.org/10.1016/j.solener.2023.02.032.
Abdalla, A. N.; Jing, W.; Nazir, M. S.; Jiang, M.; Tao, H. in: Socio-Economic Impacts of Solar Energy Technologies for Sustainable Green Energy: A Review; Springer Netherlands, 2022. DOI: https://doi.org/10.1007/s10668-022-02654-3.
Kennedy, C. E. Natl. Renew. Energy Lab. 2002, 1-53.
Trejo, G.; Ruiz, H.; Borges, R. O.; Meas, Y. J. Appl. Electrochem. 2001, 31, 685–692. DOI: https://doi.org/10.1023/A:1017580025961.
Soto, A. B.; Arce, E. M.; Palomar-Pardavé, M.; González, I. Electrochim. Acta. 1996, 41, 2647–2655. DOI: https://doi.org/10.1016/0013-4686(96)00088-6.
Ibanez, J. G.; Ibanez, J. G.; Choi, C.; Becker, R. S. J. Electrochem. Soc. 1987, 134, 3083–3089. DOI: https://doi.org/10.1149/1.2100344.
Liu, H.; Zhao, X.; Yang, Y.; Li, Q.; Lv, J. Adv. Mater. 2008, 20, 2050–2054. DOI: https://doi.org/10.1002/adma.200702624.
Vullum, F.; Teeters, D. J. Power Sources. 2005, 146, 804–808. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.086.
Lizama-Tzec, F. I.; Frutis, A.; Gattorno, G.; Oskam, G. J. New Mater. Electrochem. Syst. 2013, 16, 209–215. DOI: https://doi.org/10.14447/jnmes.v16i3.20.
Lizama-Tzec, F. I.; Canché-Canul, L.; Oskam, G. Electrochim. Acta. 2011, 56, 9391–9396. DOI: https://doi.org/10.1016/j.electacta.2011.08.023.
Herderick, E. D.; Reddy, K. M.; Sample, R. N.; Draskovic, T. I.; Padture, N. P. Appl. Phys. Lett. 2009, 95, 1–4. DOI: https://doi.org/10.1063/1.3263733.
Barrera, E.; González, I.; Viveros, T. Sol. Energy Mater. Sol. Cells. 1998, 51, 69–82. DOI: https://doi.org/10.1016/S0927-0248(97)00209-2.
Lizama-Tzec, F. I.; Macías, J. D.; Estrella-Gutiérrez, M. A.; Cahue-López, A. C.; Arés, O.; de Coss, R.; Alvarado-Gil, J. J.; Oskam, G. J. Mater. Sci. Mater. Electron. 2015, 26, 5553-5561. DOI: https://doi.org/10.1007/s10854-014-2195-5.
Ortiz, Z. I.; Díaz-Arista, P.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Corros. Sci. 2009, 51, 2703–2715. DOI: https://doi.org/10.1016/j.corsci.2009.07.002.
Trejo, G.; Ortega, R.; Meas, Y.; Chainet, E.; Ozil, P. J. Appl. Electrochem. 2003, 33, 373–379. DOI: https://doi.org/10.1023/A:1024466604939.
Rivas-Esquivel, F. M.; Brisard, G. M.; Ortega-Borges, R.; Trejo, G.; Escobedo, P. Int. J. Electrochem. Sci 2017, 12, 2026–2041. DOI: https://doi.org/10.20964/2017.03.58.
17. Luis Ortiz-Aparicio, J.; Meas, Y.; Trejo, G.; Ortega, R.; Chapman, T. W.; Chainet, E. J Appl Electrochem 2013, 43, 289–300. DOI: https://doi.org/10.1007/s10800-012-0518-x.
Duffie, J. A.; Beckman, W. A.; Worek, W. M., in: Solar Engineering of Thermal Processes, 1994, 67-70.
Xiao, X.; Miao, L.; Xu, G.; Lu, L.; Su, Z.; Wang, N.; Tanemura, S. Appl. Surf. Sci. 2011, 257, 10729–10736. DOI: https://doi.org/10.1016/j.apsusc.2011.07.088.
Garcia-Valladares, O.; Figueroa, I. P., in: Aplicaciones Térmicas de La Energía Solar, 2017, 1-156.
Esposito, S.; Antonaia, A.; Addonizio, M. L.; Aprea, S. Thin Solid Films. 2009, 517, 6000–6006. DOI: https://doi.org/10.1016/j.tsf.2009.03.191.
Selvakumar, N.; Barshilia, H. C. Sol. Energy Mater. Sol. Cells. 2012, 98, 1–23. DOI: https://doi.org/10.1016/j.solmat.2011.10.028.
Salmi, J.; Bonino, J. P.; Bes, R. S. J. Mater. Sci. 2000, 35, 1347–1351. DOI: https://doi.org/10.1023/A:1004773821962.
Klochko, N. P.; Klepikova, K. S.; Tyukhov, I. I.; Myagchenko, Y. O.; Melnychuk, E. E.; Kopach, V. R.; Khrypunov, G. S.; Lyubov, V. M.; Kopach, A. V.; Starikov, V. V.; Kirichenko, M. V. Sol. Energy. 2015, 117, 1–9. DOI: https://doi.org/10.1016/j.solener.2015.03.047.
Koltun, M.; Gukhman, G.; Gavrilina, A. Sol. Energy Mater. Sol. Cells. 1994, 33, 41–44. DOI: https://doi.org/10.1016/0927-0248(94)90287-9.
Shawki, S.; Mikhail, S. Mater. Manuf. Process. 2000, 15, 737–746. DOI: https://doi.org/10.1080/10426910008913017.
John, S. Met. Finish. 1997, 95, 84–86. DOI: https://doi.org/10.1016/S0026-0576(97)88982-9.
Estrella-Gutiérrez, M. A.; Lizama-Tzec, F. I.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta 2016, 213, 460–468. DOI: https://doi.org/10.1016/j.electacta.2016.07.125.
Lizama-Tzec, F. I.; Manterola-Villanueva, G.; García-Valladares, O.; Herrera-Zamora, D. M.; Oskam, G.; Rodríguez-Gattorno, G. J. Energy, Eng. Optim. Sustain. 2023, 7, 49-62. DOI: 10.19136/jeeos.a7n2.5677.
Herrera-Zamora, D. M.; Lizama-Tzec, F. I.; Santos-González, I.; Rodríguez-Carvajal, R. A.; García-Valladares, O.; Arés-Muzio, O.; Oskam, G. Sol. Energy. 2020, 207, 1132–1145. DOI: https://doi.org/10.1016/j.solener.2020.07.042.
Smith, G. B.; Ignatiev, A.; Zajac, G. J. Appl. Phys. 1980, 51, 4186–4196. DOI: https://doi.org/10.1063/1.328276.
Prakash, E. S.; Madhukeshwaran, N. Int. J. Energy Environ. 2012, 3, 2076-2909.
Kruidhof, W.; van der Leij, M. Sol. Energy Mater. Sol. Cells. 1979, 2, 69–79.
Barrera, E.; Pardavé, M. P.; Batina, N.; González, I. J. Electrochem. Soc. 2000, 147, 1787-1796. DOI: https://doi.org/10.1149/1.1393435.
Barrera, C. E.; Salgado, L.; Morales, U.; González, I. Renew. Energy. 2001, 24, 357–364. DOI: https://doi.org/10.1016/S0960-1481(01)00017-9.
John, S.; Nagarani, N.; Rajendran, S. Sol. Energy Mater. 1991, 22, 293–302. DOI: https://doi.org/10.1016/0165-1633(91)90036-K.
Domínguez-Crespo, M. A.; Plata-Torres, M.; Torres-Huerta, A. M.; Arce-Estrada, E. M.; Hallen-López, J. M. Mater. Charact. 2005, 55, 83–91. DOI: https://doi.org/10.1016/j.matchar.2005.03.003.
Palomar-Pardavé, M.; Aldana-González, J.; Botello, L. E.; Arce-Estrada, E. M.; Ramírez-Silva, M. T.; Mostany, J.; Romero-Romo, M. Electrochim. Acta. 2017, 241, 162–169. DOI: https://doi.org/10.1016/j.electacta.2017.04.126.
Landa-Castro, M.; Aldana-González, J.; Montes de Oca-Yemha, M. G.; Romero-Romo, M.; Arce-Estrada, E. M.; Palomar-Pardavé, M. J. Alloys Compd. 2020, 830, 1–9. DOI: https://doi.org/10.1016/j.jallcom.2020.154650.
Manh, T. Le; Arce-Estrada, E. M.; Mejía-Caballero, I.; Aldana-González, J.; Romero-Romo, M.; Palomar-Pardavé, M. J. Electrochem. Soc. 2018, 165, D285–D290. DOI: https://doi.org/10.1149/2.0941807jes.
Palomar-Pardavé, M.; González, I.; Soto, A. B.; Arce, E. M. J. Electroanal. Chem. 1998, 443, 125–136. DOI: https://doi.org/10.1016/S0022-0728(97)00496-8.
Barrera, C. E.; Lara, V. H.; Viveros, G. T.; González, M. I. Surf. Eng. 2000, 16, 50–53. DOI: https://doi.org/10.1179/026708400322911528.
Toghdori, G.; Rozati, S. M.; Memarian, N.; Arvand, M.; Bina, M. H. Proceedings of the World Renewable Energy Congress – Sweden, 2011, 57, 4021–4026. DOI: https://doi.org/10.3384/ecp110574021.
Vitt, B. Sol. Energy Mater. 1986, 13, 323–350. DOI: https://doi.org/10.1016/0165-1633(86)90082-1.
Vitt, B. Sol. Collect. 1987, 43, 244–252.
Rodriguez-Valadez, F.; Ortiz-Éxiga, C.; Ibanez, J. G.; Alatorre-Ordaz, A.; Gutierrez-Granados, S. Environ. Sci. Technol. 2005, 39, 1875–1879. DOI: https://doi.org/10.1021/es049091g.
Morales, U.; Meas, Y.; Poillerat, G. C. R. Seances Acad. Sci. 1984, 298, 117–119.
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Archer, J.; John, C. Trans. Inst. Met. Finish. 2004, 82, 14–17. DOI: https://doi.org/10.1080/00202967.2004.11871547.
Ritchie, I. T.; Sharma, S. K.; Valignat, J.; Spitz, J. Sol. Energy Mater. 1979, 2, 167–176. DOI: https://doi.org/10.1016/0165-1633(79)90016-9.
Spitz, J.; Van Danh, T.; Aubert, A. Sol. Energy Mater. 1979, 1, 189–200. DOI: https://doi.org/10.1016/0165-1633(79)90037-6.
Raghunathan, K. Second Annu. Conf. Absorber Surfaces Sol. Receiv. 1979, 222.
Pettit, R. B.; Sowell, R. R.; Hall, I. J. Sol. Energy Mater. 1982, 7, 153–170. DOI: https://doi.org/10.1016/0165-1633(82)90081-8.
Xu, C.; Wang, X.; Liu, J. ACS Appl. Mater. Interfaces. 2022, 14, 33211-33218. DOI: https://doi.org/10.1021/acsami.2c07469.
Cetina-Dorantes, M.; Lizama-Tzec, F. I.; Estrella-Gutiérrez, M. A.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta. 2021, 391, 11–17. DOI: https://doi.org/10.1016/j.electacta.2021.138906.
Uma, C. S.; Malhotra, L. K.; Chopra, K. L. Bull. Mater. Sci. 1986, 8, 385–389. DOI: https://doi.org/10.1007/BF02744150.
Asadi, M.; Rozati, S. M. Mater. Sci. Pol. 2017, 35, 355–361. DOI: https://doi.org/10.1515/msp-2017-0054.
Lizama-Tzec, F. I.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Gómez-Espinoza, V. H.; Santos-González, I.; Cetina-Dorantes, M.; Vega-Poot, A. G.; García-Valladares, O.; Oskam, G. Sol. Energy, 2019, 194, 302–310. DOI: https://doi.org/10.1016/j.solener.2019.10.066.
Macdonald, G. Thin Solid Films. 1980, 72, 83–87.
Wang, X.; Lee, E.; Xu, C.; Liu, J. Mater. Today Energy. 2021, 19, 100609. DOI: https://doi.org/10.1016/j.mtener.2020.100609.
Pethkar, S.; Takwale, M. G.; Agashe, C.; Bhide, V. G. Sol. Energy Mater. Sol. Cells 1993, 31, 109–117DOI: https://doi.org/10.1016/0927-0248(93)90044-4.
Geetha Priyadarshini, B.; Aich, S.; Chakraborty, M. J. Mater. Sci. 2011, 46, 2860–2873. DOI: https://doi.org/10.1007/s10853-010-5160-6.
Müller, S.; Giovannetti, F.; Reineke-Koch, R.; Kastner, O.; Hafner, B. Sol. Energy. 2019, 188, 865–874. DOI: https://doi.org/10.1016/j.solener.2019.06.064.
Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. Renew. Energy. 2012, 39, 293–298. DOI: https://doi.org/10.1016/j.renene.2011.08.056.
Moss, R. W.; Henshall, P.; Arya, F.; Shire, G. S. F.; Eames, P. C.; Hyde, T. Sol. Energy. 2018, 164, 109–118. DOI: https://doi.org/10.1016/j.solener.2018.02.004.
Sakhaei, S. A.; Valipour, M. S. J. Therm. Anal. Calorim. 2020, 140, 1597–1610. DOI: https://doi.org/10.1007/s10973-019-09148-x.
Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F. T.; Vlachopoulos, N.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Nat. 2023, 613, 60-65. DOI: https://doi.org/10.1038/s41586-022-05460-z.
Pérez-González, M.; Tomás, S. A.; Santoyo-Salazar, J.; Gallardo-Hernández, S.; Tellez-Cruz, M. M.; Solorza-Feria, O. J. Alloys Compd. 2019, 779, 908–917.DOI: https://doi.org/10.1016/J.JALLCOM.2018.11.302.
Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater. 2009, 21, 4087–4108. DOI: https://doi.org/10.1002/adma.200803827.
Natsume, Y.; Sakata, H. Thin Solid Films. 2000, 372, 30–36. DOI: https://doi.org/10.1016/S0040-6090(00)01056-7.
Ramírez-Ortega, D.; Meléndez, A. M.; Acevedo-Peña, P.; González, I.; Arroyo, R. Electrochim. Acta. 2014, 140, 541–549. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2014.06.060.
Lopez, T.; Sanchez, E.; Bosch, P.; Meas, Y.; Gomez, R. Mater. Chem. Phys. 1992, 32, 141–152. DOI: https://doi.org/10.1016/0254-0584(92)90270-I.
Chen, Z.; Tang, Y.; Zhang, L.; Luo, L. Electrochim. Acta. 2006, 51, 5870–5875. DOI: https://doi.org/10.1016/J.ELECTACTA.2006.03.026.
Canava, B.; Lincot, D. J. Appl. Electrochem. 2000, 30, 711–716.
Yu, J.; Yu, X. Environ. Sci. Technol. 2008, 42, 4902–4907. DOI: https://doi.org/10.1021/ES800036N/SUPPL_FILE/ES800036N-FILE003.PDF.
Pandey, P.; Kurchania, R.; Haque, F. Z. Optik (Stuttg). 2015, 126, 301–303. DOI: https://doi.org/10.1016/J.IJLEO.2014.08.160.
Kolodziejczak-Radzimska, A.; Jesionowski, T. Mater. 2014, 7, 2833-2881. DOI: https://doi.org/10.3390/MA7042833.
Maldonado, M.; Vega-Pérez, J.; Solorza-Feria, Mater. Sci. Eng. B. 2010, 174, 42–45. DOI: https://doi.org/10.1016/J.MSEB.2010.03.074.
Maldonado, A.; Asomoza, R.; Cañetas-Ortega, J.; Zironi, E. P.; Hernández, R.; Patiño, R.; Solorza-Feria, O. Sol. Energy Mater. Sol. Cells. 1999, 57, 331–344. DOI: https://doi.org/https://doi.org/10.1016/S0927-0248(98)00170-6.
Ortiz-Aparicio, J. L.; Meas, Y.; Chapman, T. W.; Trejo, G.; Ortega, R.; Chainet, E. J. Appl. Electrochem. 2015, 45, 67–78. DOI: https://doi.org/10.1007/S10800-014 07779/FIGURES/6.
Rodríguez-Pérez, M.; Canto-Aguilar, E. J.; García-Rodríguez, R.; De Denko, A. T.; Oskam, G.; Osterloh, F. E. J. Phys. Chem. C. 2018, 122, 2582–2588. DOI: https://doi.org/10.1021/ACS.JPCC.7B11727/SUPPL_FILE/JP7B11727_SI_001.PDF.
Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Electrochim. Acta. 2007, 52, 3686–3696. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2006.10.042.
Yoshida, T.; Komatsu, D.; Shimokawa, N.; Minoura, H. Thin Solid Films. 2004, 451, 166–169. DOI: https://doi.org/10.1016/j.tsf.2003.10.097.
Chang, G. J.; Lin, S. Y.; Wu, J. J. Nanoscale. 2014, 6, 1329–1334. DOI: https://doi.org/10.1039/c3nr05267b.
Zi, M.; Zhu, M.; Chen, L.; Wei, H.; Yang, X.; Cao, B. Ceram. Int. 2014, 40, 7965–7970. DOI: https://doi.org/10.1016/j.ceramint.2013.12.146.
Nunes, V. F.; Souza, A. P. S.; Lima, F.; Oliveira, G.; Freire, F. N.; Almeida, A. F. Mater. Res. 2018, 21, 1–8. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2017-0990.
Lima, F. A. S.; Vasconcelos, I. F.; Lira-Cantu, M. Ceram. Int. 2015, 41, 9314–9320. DOI: https://doi.org/https://doi.org/10.1016/j.ceramint.2015.03.271.
Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T.; Minoura, H. Solid State Ionics. 2002, 151, 19–27. DOI: https://doi.org/https://doi.org/10.1016/S0167-2738(02)00599-4.
Gaikwad, M. A.; Suryawanshi, M. P.; Maldar, P. S.; Dongale, T. D.; Moholkar, A. V. Opt. Mater. 2018, 78, 325–334. DOI: https://doi.org/https://doi.org/10.1016/j.optmat.2018.02.040.
Marimuthu, T.; Anandhan, ·N; Thangamuthu, ·R; Surya, ·S. J. Mater. Sci. Mater. Electron. 2018, 29, 12830–12841. DOI: https://doi.org/10.1007/s10854-018-9402-8.
Linn, Y.; Yang, J.; Meng, Y. Ceram. Int. 2013, 39, 5049–5052.
Şişman, İ.; Can, M.; Ergezen, B.; Biçer, M. RSC Adv. 2015, 5, 73692–73698. DOI: https://doi.org/10.1039/C5RA13623G.
Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Lai, Y.-H.; Vittal, R.; Ho, K.-C. Prog. Photovoltaics Res. Appl. 2014, 22, 440–451. DOI: https://doi.org/https://doi.org/10.1002/pip.2288.
Canto-Aguilar, E. J.; González-Flores, C. A.; Peralta-Domínguez, D.; Andres-Castán, J. M.; Demadrille, R.; Rodríguez-Pérez, M.; Oskam, G. J. Electrochem. Soc. 2022, 169, 42504. DOI: https://doi.org/10.1149/1945-7111/ac62c8.
Minoura, H.; Yoshida, T. Electrochemistry. 2008, 76, 109–117. DOI: https://doi.org/10.5796/electrochemistry.76.109.
Canto-Aguilar, E. J.; Rodríguez-Pérez, M.; García-Rodríguez, R.; Lizama-Tzec, F. I.; De Denko, A. T.; Osterloh, F. E.; Oskam, G. Electrochim. Acta. 2017, 258, 396–404. DOI: https://doi.org/10.1016/J.ELECTACTA.2017.11.075.
Bittner, F.; Oekermann, T.; Wark, M. Materials. 2018, 11, 232. DOI: https://doi.org/10.3390/ma11020232.
Omar, A.; Abdullah, H. Renew. Sustain. Energy Rev. 2014, 31, 149–157. DOI: https://doi.org/10.1016/j.rser.2013.11.031.
Sarker, S.; Seo, H. W.; Kim, D. M. J. Power Sources. 2014, 248, 739–744. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.101.
Vega-Poot, A. G.; Macias-Montero, M.; Barranco, A.; Borras, A.; Gonzalez-Elipe, A. R.; Oskam, G.; Anta, J. A. Energy Environ. Focus. 2013, 2, 270–276. DOI: https://doi.org/10.1166/eef.2013.1062.
Pourjafari, D.; Oskam, G. Nanomater. Sol. Cell Appl. 2019, 145-204. DOI: https://doi.org/10.1016/B978-0-12-813337-8.00006-0.
Guillén, E.; Peter, L. M.; Anta, J. A. J. Phys. Chem. C 2011, 115, 22622–22632.
Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, M.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 558–562. DOI: https://doi.org/10.1021/ja805850q.
Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360–5364. DOI: https://doi.org/10.1039/b310907k.
Vega-Poot, A. G.; Macías-Montero, M.; Idígoras, J.; Borrás, A.; Barranco, A.; Gonzalez-Elipe, A. R.; Lizama-Tzec, F. I.; Oskam, G.; Anta, J. A. ChemPhysChem. 2014, 15, 1088–1097. DOI: https://doi.org/10.1002/cphc.201301068.
Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H. Superlattices Microstruct. 2016, 96, 82–94. DOI: https://doi.org/10.1016/j.spmi.2016.05.012.
Bisquert, J. J. Phys. Chem. B. 2002, 106, 325–333. DOI: https://doi.org/10.1021/jp011941g.
Mohammadpour, R.; Zad, A. I.; Hagfeldt, A.; Boschloo, G. ChemPhysChem. 2010, 11, 2140–2145. DOI: https://doi.org/10.1002/cphc.201000125.
Lee, K. M.; Lee, E. S.; Yoo, B.; Shin, D. H. Electrochim. Acta. 2013, 109, 181–186. DOI: https://doi.org/10.1016/j.electacta.2013.07.055.
Wang, H.; Wei, W.; Hu, Y. H. J. Mater. Chem. A. 2013, 1, 6622–6628. DOI: https://doi.org/10.1039/C3TA10892A.
Pauporté, T.; Magne, C. Thin Solid Films. 2014, 560, 20–26. DOI: https://doi.org/10.1016/j.tsf.2013.11.121.
Lizama-Tzec, F. I.; García-Rodríguez, R.; Rodríguez-Gattorno, G.; Canto-Aguilar, E. J.; Vega-Poot, A. G.; Heredia-Cervera, B. E.; Villanueva-Cab, J.; Morales-Flores, N.; Pal, U.; Oskam, G. RSC Adv. 2016, 6, 37424–37433. DOI: https://doi.org/10.1039/c5ra25618f.
Pérez-Hernández, G.; Vega-Poot, A.; Pérez-Juárez, I.; Camacho, J. M.; Arés, O.; Rejón, V.; Peña, J. L.; Oskam, G. Sol. Energy Mater. Sol. Cells. 2012, 100, 21–26. DOI: https://doi.org/10.1016/j.solmat.2011.05.012.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Francisco Ivan Lizama-Tzec, Manuel Rodríguez-Pérez, Alberto Vega-Poot, Dallely Melissa Herrera-Zamora, Manuel Alejandro Estrella-Gutiérrez, Esdras Canto-Aguilar, Marco Cetina-Dorantes, Gerko Oskam
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.