Synthesis of Functionalized Flexible and Rigid Polyurethane for Oil Spill Treatment
DOI:
https://doi.org/10.29356/jmcs.v68i2.2046Keywords:
Oil spill, polyurethane, crude oil, diesel fuelAbstract
Abstract. To improve the oleophilic and hydrophobic properties of two different types of polyurethane sponge (flexible, FPU, and rigid, RPU) for oil spill cleanup, acrylamido phenyl chalcone palamitamid, a recently synthesized monomer with long chains of linear alkyl groups, was in situ crosslinked with divinylbenzene. Grafted PU cubes were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The water sorption of ungrafted FPU and RPU decreased from 18.05 and 15.66 to 7.31 and 7.06 for grafted FPU and RPU, respectively. The effect of oil type on the sorption capacity testing was explored and compared using crude oil, diesel fuel, and water-oil systems. It was found that the crude oil and diesel fuel sorption of grafted FPU and RPU cubes was increased compared with ungrafted FPU and RPU cubes, and the maximum values for adsorption were recorded using crude oil. These results can be explained by increasing the adherent forces between the adsorbent and the oil surface with increasing oil viscosity, and consequently, the oil adsorption increases. The high oil absorption capacity is mainly attributed to the high porosity of the sponges. The modified FPU and RPU cubes can be effectively used in oil and water spill cleanup.
Resumen. Para mejorar las propiedades oleófilica e hidrofóbica de dos tipos diferentes de esponjas de poliuretano (flexible, FPU y rígida, RPU) para la limpieza de derrames de petróleo, se llevó a cabo una reacción de entrecruzamiento in situ con divinilbenceno a partir de acrilamido fenil chalcona palamitamida, un monómero recientemente sintetizado y que contiene cadenas largas de grupos alquilo lineales. Los cubos de PU injertados se caracterizaron mediante espectroscopía infrarroja por transformada de Fourier (FTIR) y microscopía electrónica de barrido (SEM). La sorción de agua de FPU y RPU no injertadas disminuyó desde 18,05 y 15,66 hasta 7,31 y 7,06 para FPU y RPU injertados, respectivamente. Se exploró y comparó el efecto del tipo de petróleo en las pruebas de capacidad de sorción, utilizando petróleo crudo, combustible diesel y mezcla agua-petróleo. Se encontró que la sorción de petróleo crudo y combustible diesel de los cubos de FPU y RPU injertados aumentó en comparación con los cubos de FPU y RPU no injertados, obteniéndose los valores máximos de adsorción para el caso de petróleo crudo. Estos resultados pueden explicarse en base al aumento de las fuerzas de adherencia entre el adsorbente y la superficie del aceite al aumentar la viscosidad del aceite, y como consecuencia la adsorción del aceite aumenta. La alta capacidad de absorción de aceite se atribuye principalmente a la alta porosidad de las esponjas. Los cubos FPU y RPU modificados se pueden utilizar eficazmente en la limpieza de derrames de petróleo y agua.
Downloads
References
Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, D.B. Science. 2003, 302, 2082–2086. DOI: https://doi.org/10.1126/science.1084282.
Bidgoli, H.; Khodadadi, A.A.; Mortazavi, Y. J. Environ. Chem. Eng. 2019, 7, 103340. DOI: https://doi.org/10.1016/j.jece.2019.103340.
Liu, Y.; Wang, X.; Feng S. Adv. Funct. Mater. 2019, 29, 1902488. DOI: https://doi.org/ 10.1002/adfm.201902488.
Benner, S. W.; John, V. T.; Hall, C. K. J. Phys. Chem. 2015, 119, 6979-6990. DOI: https://doi.org/ 10.1021/acs.jpcb.5b01092.
Kim, H.; Zhang, G., Chung, T. M., Nam, C. Adv. Sustainable Syst. 2022, 6, 2100211. DOI: https://doi.org/10.1002/adsu.202100211.
Muriel, D. F.; Katz, J.; Langmuir. 2021, 37, 1725-1742. DOI: https://doi.org/10.1021/acs.langmuir.0c02986.
Baharuddin, S. H.; Mustahil, N. A.; Reddy, A. V. B.; Abdullah, A.A.; Mutalib, M. I. A.; Moniruzzaman, M. Chemosphere. 2020, 249, 126125. DOI: https://doi.org/10.1016/j.chemosphere.2020.126125.
Lü, X.; Cui, Z.; Wei, W.; Xie, J.; Liang, J.; Huang, J.; Liu, J. Chem. Eng. J. 2016, 284, 478–486. DOI: https://doi.org/ 10.1016/j.cej.2015.09.002.
Peng, M.; Zhu, Y.; Li, H.; He, K.; Zeng, G.; Chen, A.; Chen, G. Chem. Eng. J. 2019, 373, 213-226. DOI: https://doi.org/10.1016/j.cej.2019.05.013.
Mao, M.; Xu, H.; Guo, K. -Y.; Zhang, J. -W.; Xia, Q. -Q.; Zhang, G. -D.; Zhao, L.; Gao, J. -F.; Tang, L. -C. Appl. Sci. Manuf. 2021, 140, 106191. DOI: https://doi.org/10.1016/j.compositesa.2020.106191.
Ge, J.; Zhao, H. Y.; Zhu, H.W.; Huang, J.; Shi, L. A.; Yu, S. H. Adv. Mater. 2016, 28, 10459-10490. DOI: https://doi.org/10.1002/adma.201601812.
Peponi, L.; Puglia, D.; Torre, L.; Valentini, L.; Kenny, J. M. Mater. Sci. Eng. Reports. 2014, 85, 1–46. DOI: https://dx.doi.org/10.1016/j. mser.2014.08.002.
Tian, S. Polymers. 2020, 12, 1996-2011. DOI: https://doi.org/10.3390/polym12091996.
Zhu, X.; Li, Q.; Wang, L.; Wang, W.; Liu, S.; Wang, C.; Qian, X. Eur. Polym. J. 2021, 161, 110837. DOI: https://doi.org/10.1016/j.eurpolymj.2021.110837.
Pham, V. H.; Dickerson, J. H. ACS Appl. Mater. Interf. 2014, 6, 14181–14188. DOI: https://doi.org/10.1021/am503503m.
Zhang, W.; Zhai, X.; Xiang, T.; Zhou, M.; Zang, D.; Gao, Z.; Wang, C. J. Mater. Sci. 2017, 52, 73–85. DOI: https://doi.org/10.1007/s10853-016-0235-7.
Lei, Z.; Zhang, G.; Ouyang, Y.; Liang, Y.; Deng, Y.; Wang, C. Mater. Lett. 2017, 190, 119–122. DOI: https://doi.org/10.1016/J.MATLET.2016.12.082.
Cho, E. C.; Chang-Jian, C. W.; Hsiao, Y.S.; Lee, K. C.; Huang, J. H. J. Taiwan Inst. Chem. Eng. 2016, 67, 476–483. DOI: https://doi.org/10.1016/j.jtice.2016.08.002.
He, K.; Chen, G.; Zeng, G.; Chen, A.; Huang, Z.; Shi, J.; Huang, T.; Peng, M.; Hu, L. Appl. Catal. 2018, 228, 19–28. DOI: https://doi.org/10.1016/j.apcatb.2018.01.061.
Shiu, R. F.; Lee, C. L.; Hsieh, P. Y.; Chen, C. S.; Kang, Y. Y.; Chin, W. C.; Tai, N. H. Chemosphere. 2018, 207, 110-117. DOI: https://doi.org/ 10.1016/j.chemosphere.2018.05.071
Bagoole, O.; Rahman, M. M.; Shah, S.; Hong, H.; Chen, H.; Ghaferi, A. A.; Younes, H. Environ. Sci. Pollut. Res. Int. 2018, 25, 23091–23105. DOI: https://doi.org/10.1007/s11356-018-2248-z.
Wang, H.; Zhang, C.; Zhou, B.; Zhang, Z.; Shen, J.; Du, A. ACS Appl. Nano Mater. 2020, 3, 1479–1488. DOI: https://doi.org/ 10.1021/acsanm.9b02303.
Khosravi, M.; Azizian, S. ACS Appl. Mater. Interf. 2015, 7, 25326. DOI: https://doi.org/10.1021/acsami.5b07504.
Oribayo, O.; Pan, Q.; Feng, X.; Rempel, G. L. AIChE J. 2017, 63, 4090–4102. DOI: https://doi.org/10.1002/aic.15767.
Borreguero, A. M.; Valverde, J. L.; Peijs, T.; Rodríguez, J. F.; Carmona, M. J. Mater. Sci. 2010, 45, 4462–4469. DOI: https://doi.org/10.1007/s10853-010-4529-x.
Al-Khalaf, A. A.; Abbas, A. F.; Al-Lami, H. S. Basrah J. Sci. 2022, 40, 437-464. DOI: https://doi.org/10.29072/basjs.20220214.
Bazargan, A.; Tan, J.; McKay, G. J. Test. Evalu. 2015, 43, 1271-1278. DOI: https://doi.org/10.1520/JTE20140227.
Li, H.; Liu, L.; Yang, F. Mar. Pollut. Bull. 2012, 64, 1648–1653. DOI: https://doi.org/ 10.1016/j.marpolbul.2012.05.039.
Wong, C. S.; Badri, K. H. Mat. Sci. Appl. 2012, 3, 78-86. DOI: https://doi.org/10.4236/msa.2012.32012.
Selvam, R.; Subramanian, K. Adv. Polym. Technol. 2018, 37, 724–731. DOI: https://doi.org/10.1002/adv.21714.
Peng, L.; Yuan, S.; Yan, G.; Yu, P.; Luo, Y. J. Appl. Polym. Sci. 2014, 131, 40886. DOI: https://doi.org/10.1002/app.40886.
Keshawy, M.; Farag, R. K.; Gaffer, A. Egypt. J. Pet. 2020, 29, 67-73. DOI: https://doi.org/10.1016/j.ejpe.2019.11.001.
Zhang, Y. L.; Xia, H.; Kim, E.; Sun, H. B. Soft Matter. 2012, 8, 11217-11231. DOI: https://doi.org/10.1039/c2sm26517f.
Zhu, J.; Wang, Z.; Ni, H.; Liu, X.; Ma, J.; Du, J. J. Chem. 2016, 2016, 1–7. DOI: https://doi.org/10.1155/2016/6095023.
Reichardt, C.; Welton, T. in: Solvents and Solvent Effects in Organic Chemistry, 4th ed. Wiley-Vch Verlag Gmbh & Co. Kgaa, Weinheim, 2010. DOI: https://doi.org/10.1002/9783527632220.
Blazejczyk, A.; Wierzbicka, P. Polimery-Warsaw. 2018, 63, 685-693. DOI: https://doi.org/ 10.14314/polimery.2018.10.4.
Al-Khalaf, A. A.; Al-Lami, H. S.; Abbas, A. F. Pet. Sci. Technol. 2022, 1-16. DOI: https://doi.org/10.1080/10916466.2022.2118774.
Visco, A.; Quattrocchi, A.; Nocita, D.; Montanini, R.; Pistone, A. Nanomaterials. 2021, 11, 735-749. DOI: https://doi.org/10.3390/nano11030735.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hadi S. Al-Lami, Abdullah A. Al-Khalaf, Abbas F. Abbas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.