Effect of the Tempering Heat Treatment on the Cu-Based Shape Memory Alloy Exposed to a Commonly used Corrosive Medium
DOI:
https://doi.org/10.29356/jmcs.v67i4.2042Keywords:
Corrosion, heat treatment, Tafel curves, EIS, shape memory alloyAbstract
Abstract. In the present work, the corrosion behavior of the as-cast Cu-9Al-3Ag alloy, with shape memory, SMA, and with tempering heat treatments at two temperatures, 400 and 600 °C, were studied. These treatments were selected due to the austenite-martensite phase transition or vice versa. For this investigation, a 0.5 M NaCl electrolyte was used. Micrographs using optical microscopy and scanning electron microscopy show the martensite phase in the Cu-9Al-3Ag alloy, likewise, in the tempered samples the austenite-martensite phases were also observed. For the evaluation of the corrosion behavior, the Tafel model was implemented, for whose curves a potential of ±200 mV was used from the Ecorr. It was observed that the sample with SMA presented a good resistance to corrosion, as well as the tempered samples, unlike the as-cast sample. Finally, impedance tests were carried out using a frequency range of 100 kHz to 10 mHz and an amplitude of 10 mV, in order to observe the resistances to the solution and to the charge transfer present in each one of the samples used.
Resumen. En el presente trabajo se estudió el comportamiento de corrosión en la aleación Cu-9Al-3Ag en estado de colada, con memoria de forma en conjunto con tratamientos térmicos de revenido a temperaturas de 400 y 600 °C. Dichos tratamientos fueron seleccionados debido al cambio de transición de fase austenita-martensita o viceversa. Para esta investigación se utilizó un electrolito a 0.5 M NaCl. Las micrografías mediante microscopia óptica y microscopia electrónica de barrido muestran la fase martensita en la aleación Cu-9Al-3Ag, así mismo, en las muestras revenidas se puede observar las fases austenita-martensita. Para la evaluación del comportamiento de corrosión se implementaron las curvas de Tafel, en las cuales se utilizó un potencial de ±200 mV a partir del Ecorr. Se observó que la muestra con SMA presento una buena resistencia a la corrosión al igual que las muestras revenidas a diferencia de la muestra en estado de colada. Por último, se realizaron pruebas de impedancia utilizando un rango de frecuencia de 100 kHz a 10 mHz y una amplitud de 10 mV, con la finalidad de observar las resistencias a la solución y a la transferencia de carga presentes en cada una de las muestras utilizadas.
Downloads
References
Vrsalovic, L.; Gudic, S.; Percic, N.; Gojic, M.; Ivanic, I.; Kozuh, S.; Nagode, A.; Kosec, B. Appl. Surf. Sci. Adv. 2023, 13, 100380. DOI: https://doi.org/10.1016/j.apsadv.2023.100380.
Zheng, S.; Chen, S.; Hong, S.; Su, Z.; Zhang, J.; Wang, L.; Wang, C.; Yang, S. J. Sci.:Adv. Mater. Devices. 2022, 7, 100448. DOI: https://doi.org/10.1016/j.jsamd.2022.100448.
ASM International., in: Copper and Copper Alloys, Davis, J. R., Ed., ASM International, Ohio, 2001, 121.
Souza, J. S.; Martins, C. R.; Silva, L. S.; Silva, R. A. G. Mater. Chem. Phys. 2022, 282, 125945. DOI: https://doi.org/10.1016/j.matchemphys.2022.125945.
Francis, R., in: The Corrosion of Copper and its Alloys. A Practical Guide for Engineers, NACE International, Texas, 2010, 10.
Ying Ci, W.; Hafiz Akhbar, M.; Abu Bakar, T. A. Jurnal Mekanikal. 2018, 41, 31-36.
Turan, N. GU. J. Sci. 2023, 11, 210-221.
Magdalena, A. G.; Adorno, A. T.; Carvalho, T. M.; Silva, R. A. G. J. Therm. Anal. Calorim. 2011, 106, 339-342. DOI: 10.1007/s10973-011-1432-x.
Gustmann, T.; Dos Santos, J. M.; Gargarella, P.; Kuhn, U.; Van Humbeec, J.; Pauly, S. Shap. Mem. Superelasticity. 2017, 3, 24-36. DOI: 10.1007/s40830-016-0088-6.
Mohammed Dawood, N.; Kadhim Abid Ali, A. R. Key Eng. Mater. 2022, 911, 96-102. DOI: 10.4028/p-3jm065.
Gojic, M.; Vrsalovic, L.; Kozuh, S.; Kneissl, A.; Anzel, I.; Gudic, S.; Kosec, B.; Kliskic, M. J. Alloys Compd. 2011, 509, 9782-9790. DOI: 10.1016/j.jallcom.2011.07.107.
Holjevac Grguric, T.; Manasijevic, D.; Kozuh, S.; Ivanic, I.; Anzel, I.; Kosec, B.; Bizjak, M.; Govorcin Bajsic, E.; Balanovic, Lj.; Gojic, M. J. Alloys Compd. 2018, 765, 664-676. DOI: https://doi.org/10.1016/j.jallcom.2018.06.250.
Placinta, C.; Stanciu, S.; Panainte-Lehadus, M.; Mosnegutu, E.; Nedeff, F.; Nedeff, V.; Tomozei, C.; Petrescu, T-C.; Agop, M. Materials. 2023, 16, 1441. DOI: https://doi.org/10.3390/ma16041441.
Chen, S.; Chen, X.; Guo, L.; Zheng, S.; Chen, F.; Wang, C.; Yang, S. Vacuum. 2023, 210, 111824. DOI: https://doi.org/10.1016/j.vacuum.2023.111824.
Silva, R. A. G..; Machado, E. S.; Adorno, A. T.; Magdalena, A. G.; Carvalho, T. M. J. Therm. Anal. Calorim. 2012, 109, 927-931. DOI:10.1007/s10973-011-1815-z.
Adorno, A. T.; Silva, A. G. J. Therm. Anal. Calorim. 2005, 79, 445-449. DOI: https://doi.org/10.1007/s10973-005-0082-2.
Li, G.; Liu, J. H.; Wang, W. K.; Liu, R. P. Chin. Phys. B. 2010, 19, 096202. DOI: 10.1088/1674-1056/19/9/096202.
Nwaeju, C. C.; Edoziuno, F. O.; Adediran, A.A.; Tuaweri, T. J.; Saravana Kumar, M. Results Eng. 2021, 12, 100295. DOI: https://doi.org/10.1016/j.rineng.2021.100295.
Guilemany, J. M.; Fernandez, J.; Zhang, X. M.; Mater. Sci. Eng., A. 2006, 438-440, 726-729. DOI: https://doi.org/10.1016/j.msea.2006.02.089.
Alaneme, K. K.; Uchenna Anaele, J.; Okotete, E. A. Sci. Afr. 2021, 12, e00760. DOI: https://doi.org/10.1016/j.sciaf.2021.e00760.
ASM Handbook., in: Alloy Phase Diagrams, ASM International, USA, 1992, 44.
Carvalho, T. M.; Adorno, A. T.; Magdalena, A. G.; Silva, R. A. G. J. Therm. Anal. Calorim. 2011, 106, 333-338. DOI: 10.1007/s10973-010-1210-1.
Adorno, A. T.; Silva, R. A. G. J. Mater. Sci. 2005, 40, 6217-6221 DOI: 10.1007/s10853-005-3151-9.
Mazzer, E. M.; da Silva, M. R.; Gargarella, P. J. Mater. Res. 2022, 37, 162-182. DOI:10.1557/s43578-021-00444-7.
Adorno, A. T.; Silva, R. A. G. J. Therm. Anal. Calorim. 2003, 73, 931-938. DOI: https://doi.org/10.1023/A:1025863404768.
Montecinos., S.; Simison, S. Corros. Sci. 2013, 74, 387-395. DOI: http://dx.doi.org/10.1016/j.corsci.2013.05.012.
Mo-yang, Y.; Zhou, L.; Zhu, X.; Yong, P.; Ya-ping, L.; Zi-yan, S. Trans. Nonferrous Met. Soc. China. 2021, 31, 1012-1022. DOI: https://10.1016/S1003-6326(21)65557-7.
Saud, S. N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R. Mater. Corros. 2015, 66, 527-534. DOI: https://10.1002/maco.201407658.
Hernández-Espejel, A.; Palomar-Pardavé, M.; Cabrera-Sierra, R.; Romero-Romo, M.; Ramírez-Silva, M. T.; Arce-Estrada, E. M. J. Phys. Chem. B. 2011, 115, 1833-1841 DOI: https://dx.doi.org/10.1021/jp106851b.
Sharma, R.; Ullas, A. V.; Ji1, G.; Prakash, R. J. Solid State Electrochem. 2022, 26, 2883-2892 DOI: https://doi.org/10.1007/s10008-022-05293-w.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Daniel Flores-Sanchez, Mieguel Ángel Suárez-Rosales, Midori Landa-Castro, Mirella Gutiérrez-Arzaluz, Manuel Palomar-Pardavé, Mario Romero-Romo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.