Non-covalent Interactions in Dihalogenated Compounds Ch(C6H4CH2X)2 (Ch = O, S; X = Cl, Br, I). Synthesis, Crystal Structure, and Hirshfeld Surface Analysis

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i2.2036

Keywords:

non-covalent interactions, dihalogenated compounds, Hirshfeld surfaces

Abstract

Abstract. In this work, the synthesis and structural study by means of single-crystal X-ray diffraction of compounds of general formula Ch(C6H4CH2X)2 (Ch = O, S; X = Cl, Br, I) is reported. These compounds contain two flexible hydrocarbonated arms –CH2X in the ortho positions to the Ch heteroatom. These compounds were synthesized through a linear synthesis starting from diphenylether or diphenylsulfide. Based on the structural analysis, we describe the more relevant molecular features as well as the non-covalent interactions that the heavy halogen atoms display with other moieties that promote the cohesion of the crystal arrangement. The Hirshfeld analysis displayed that the X···π, X···X, and C–H···X interactions are quite significant in the crystal arrangement.

 

Resumen. En este trabajo, se describen la síntesis y el estudio estructural de difracción de rayos-X de monocristal de seis compuestos con fórmula general Ch(C6H4CH2X)2 (Ch = O, S; X = Cl, Br, I), que contienen dos brazos hidrocarbonados flexibles –CH2X en las posiciones orto al heteroátomo Ch. Estos compuestos fueron sintetizados a través de una síntesis lineal, partiendo de difeniléter o difeniltioéter. A través del análisis estructural se describen las características moleculares más relevantes, así como las interacciones no-covalentes que presentan los átomos de halógeno pesados con otros grupos funcionales para dar cohesión a la red cristalina. El estudio de las superficies de Hirshfeld mostró que las interacciones X···π, X···X y C–H···X son muy relevantes en esta cohesión.

Downloads

Download data is not yet available.

Author Biographies

J. Viridiana García-González, Universidad Autónoma del Estado de Hidalgo

Instituto de Ciencias Básicas e Ingeniería

Jose G. Alvarado-Rodríguez, Universidad Autónoma del Estado de Hidalgo

Instituto de Ciencias Básicas e Ingeniería

Noemí Andrade-López, Universidad Autónoma del Estado de Hidalgo

Instituto de Ciencias Básicas e Ingeniería

Cristian G. Guerra-Poot, Universidad Autónoma del Estado de Hidalgo

Instituto de Ciencias Básicas e Ingeniería

References

Dean, J. A., in: Lange's Handbook of Chemistry (15th Edition), McGraw-Hill Education, New York, 1999, 330.

Häggblom, M. M.; Bossert, I. D., in: Halogenated Organic Compounds - A Global Perspective. In Dehalogenation. Springer, Boston, MA, 2004, 3-29. DOI: https://doi.org/10.1007/0-306-48011-5_1.

Patai S., Rappoport Z., in: Halides, Pseudo‐Halides and Azides; Part 1 and Part 2 in The Chemistry of Functional Groups, John Wiley & Sons Ltd, 1983, 1-223. DOI:10.1002/9780470771716.

Anderson B. M., Meyers R. A.; in: Halogen Chemistry. In Encyclopedia of Physical Science and Technology (Third Edition), Academic Press, Elsevier, 2003, 197-222. DOI: https://doi.org/10.1016/B0-12-227410-5/00307-0.

Smolnikov, S.; Bin Shahari, M.; Dolzhenko, in: Green sustainable process for chemical and environmental engineering and science: A. Sonochemical protocols for Grignard reactions. Elsevier, 2020, 243-255. DOI: 10.1016/B978-0-12-819540-6.00009-7.

Odd Hassel – Nobel Lecture. NobelPrize.org. Nobel Prize Outreach AB 2023. Sun. 19 Mar 2023. https://www.nobelprize.org/prizes/chemistry/1969/hassel/lecture/

Desiraju, G. R.; Ho, P. S.; Kloo, L. Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Pure Appl. Chem. 2013, 85, 1711–1713. DOI: http://dx.doi.org/10.1351/PAC-REC-12-05-10.

Cavallo, G.; Metrangolo, P.; Milani, R.: Pilati, T.; Priimagi, A.; Resnati, G. Terraneo, G. Chem. Rev. 2016, 116, 2478-2601. DOI: https://pubs.acs.org/doi/10.1021/acs.chemrev.5b00484.

Metrangolo, P.; Neukirch, H. Pilati, T.; Resnati, G. J. Am. Chem. Soc. 2005, 38, 386–395. DOI: https://doi.org/10.1021/ar0400995.

Sutar, R. L.; Huber, S. M. J. Am. Chem. Soc. 2019, 9, 9622–9639. DOI: https://doi.org/10.1021/acscatal.9b02894.

Ding, X., Tuikka, M.; Haukka, M., in: Halogen Bonding in Crystal Engineering: Recent Advances in Crystallography, IntechOpen, 2012, 143-168. DOI: https://doi.org/10.5772/48592.

Nunzi, F.; Cesario, D.; Tarantelli, F.; Belpassi, L. Chem. Phys. Lett. 2021, 771, 138522. DOI: https://doi.org/10.1016/j.cplett.2021.138522.

Prasanna, M.D.; Guru Row, T.N. Cryst. Eng. 2000, 3, 135-154. DOI: https://doi.org/10.1016/S1463-0184(00)00035-6.

Zhao-Qi, G.; Shi-Hui, Q.; Huan-Hui, Y.; Shan-Chao, W.; Meng, Z.; Gui-Mei, T.; Yong-Tao, W.; Tao, A.; Seik-Weng N. J. Mol. Struct. 2022, 1267, 133606. DOI: https://doi.org/10.1016/j.molstruc.2022.133606.

Mejia-Rivera, F. J.; Alvarado-Rodríguez, J. G.; Andrade-López, N.; Cruz-Borbolla, J.; Jancik, V. Inorg. Chem. Commun. 2018, 97, 44-48. DOI: https://doi.org/10.1016/j.inoche.2018.09.006.

Nather, C.; Jess, I.; Kus, P.; Jones, P.G. Cryst. Eng. Comm. 2016, 18, 3142

Xu, X.; Strongin, R.M.; Fronczek, F.R. CSD Communication (Private Communication), 2015.

Oxford Diffraction CrysAlis software system, version 1.171.37.35. Oxford Diffraction Ltd., Abingdon, UK (2014)

Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann H. J. Appl. Cryst. 2009, 42, 339–341.

Sheldrick, G.M. Acta Cryst. A. 2015, 71, 3–8.

Sheldrick, G.M. Acta Cryst. C. 2015, 71, 3–8.

Spackman, M.A.; Jayatilaka, D. CrystEngComm. 2009, 11, 19–32

Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. J. Appl. Cryst. 2021, 54,1006–1011.

Jayatilaka, D.; Grimwood D.J. Comput. Sci. ICCS, 2003, 4, 142–151.

Becke A.D. J. Chem. Phys. 1993, 98, 5648–5652

Godbout, N.; Salahub, D. R.; Andzelm J.; Wimmer Can, E. J. Chem. 1992, 70, 560–571.

Sosa, C.; Andzelm, J.; Elkin, B.C.; Wimmer, E.; Dobbs, K.D.; Dixon D.A. J. Phys. Chem. 1992, 96, 6630–6636.

Osuka, A.; Kobayashi, F.; Maruyama, K. Bull. Chem. Soc. Jpn. 1991, 64, 1213-1225. DOI: https://doi.org/10.1246/bcsj.64.1213.

Britovsek, G. J. P.; Gibson, V. C.; Hoarau, O. D.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Inorg. Chem. 2003, 42, 3454-3465. DOI: https://doi.org/10.1021/ic034040.

Martínez-Otero, D.; Alvarado-Rodríguez, J. G.; Cruz-Borbolla, J.; Andrade-López, N.; Pandiyan, T.; Moreno-Esparza, R.; Flores-Alamo, M.; Cantillo-Castillo J. Polyhedron. 2012, 33, 367-377. DOI: https://doi.org/10.1016/j.poly.2011.11.053.

Kida, T.; Kikuzawa, A.; Higashimoto, H.; Nakatsuji, Y.; Akashi, M. Tetrahedron. 2005, 61, 5763–5768. DOI: https://doi.org/10.1016/j.tet.2005.04.026.

McAdam, C.J.; Hanton, L.R.; Moratti, S.C.; Simpson, J. Acta Crystallogr. E: Crystallogr. Commun. 2015, 71, 1505-1509. DOI: 10.1107/S2056989015021295.

Appel, R. Angew. Chem. Int. Ed. Engl. 1975, 14, 801-811. DOI: https://doi.org/10.1002/anie.197508011.

Cristol, S. J.; Strom, R. M.; Stull, D. P., J. Org. Chem. 1978, 43, 1150. DOI: https://doi.org/10.1021/jo00400a027.

Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; J. Echeverría, J., Cremades, E.; Barragán F.; Alvarez, S. Dalton Trans. 2008, 21, 2832-2838. DOI: https://doi.org/10.1039/B801115J.

Gillespie, R.J. Popelier, P.L.A., in: Chemical Bonding and Molecular Geometry; From Lewis to Electron densities. Oxford University Press, New York, 2001, 84. DOI: 10.1021/ed080p31.

Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. J. Appl. Cryst. 2020, 53, 226-236. DOI: https://scripts.iucr.org/cgi-bin/paper?gj5232.

Downloads

Published

2024-02-01