Chemical Characterization and Antioxidant Evaluation of Young and Aged Wines from Aguascalientes and Queretaro
DOI:
https://doi.org/10.29356/jmcs.v67i4.2001Keywords:
Mexican red wine, electrochemical characterization, total polyphenols, differential pulse voltammetry, antioxidant activityAbstract
Abstract. Red wine is distinguished by a high economic and cultural value and therefore, its reliable characterization is important to assess its quality and authentication. Currently, Mexican wine consumption is growing due to wine tourism initiatives, then the determination of the chemical profile of commercial selected samples of young and aged red wines produced at wineries from Queretaro and Aguascalientes was performed. Seventy-eight nonvolatile compounds were identified by ultra performance liquid chromatography coupled to mass spectrometry. Three main families of secondary metabolites (Flavonols, ellagitannins and anthocyanins) were quantified by differential pulse voltammetry using carbon screen printed electrodes (SPEs). Tempranillo aged wine from Vinos del Marqués, Queretaro, showed the highest content of total polyphenols and anthocyanins from the evaluated wine samples. This research contributes to the knowledge of the chemical profile of commercial selected samples from wineries that belong to Mexican wine routes in a consolidated and experimental stage.
Resumen. El vino tinto se distingue por un alto valor económico y cultural y, por lo tanto, su caracterización confiable es importante para evaluar su calidad y autenticación. Actualmente, el consumo de vinos mexicanos se encuentra en crecimiento debido a las iniciativas de enoturismo, por ello, se llevó a cabo la determinación del perfil químico de muestras comerciales seleccionadas de vinos tintos jóvenes y de conserva producidos en bodegas de Querétaro y Aguascalientes. Se identificaron setenta y ocho compuestos no volátiles mediante cromatografía líquida de alta resolución acoplada a espectrometría de masas. Tres familias principales de metabolitos secundarios (flavonoles, elagitaninos y antocianinas) fueron cuantificadas mediante voltamperometría de pulso diferencial utilizando electrodos serigrafiados (SPEs) de carbón. El vino Tempranillo conserva de Vinos del Marqués, Querétaro, mostró el mayor contenido de polifenoles totales y antocianinas de las muestras de vino evaluadas. Esta investigación contribuye al conocimiento del perfil químico de muestras comerciales seleccionadas de bodegas pertenecientes a las rutas del vino mexicano en etapa consolidada y experimental.
Downloads
References
Pasvanka, K.; Tzachristas, A.; Proestos, C., in: Quality Control in the Beverage Industry: The Science of Beverages, Vol. 17, Grumezescu, A.M.; Holban, A.M., Eds., Elsevier US, Cambridge, MA., 2019, 289-334. DOI: https://doi.org/10.1016/B978-0-12-816681-9.00009-6.
Hosu, A.; Vasile-Mircea, C.; Cimpoiu, C. Food Chem. 2014, 150, 113-118. DOI: https://doi.org/10.1016/j.foodchem.2013.10.153.
Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Food Control. 2017, 80, 1-10. DOI: https://doi.org/10.1016/j.foodcont.2017.04.020.
Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. Food Chem. 2016, 208, 228-238. DOI: https://doi.org/10.1016/j.foodchem.2016.04.009.
Canizo, B. V.; Escudero, L. B.; Pellerano, R. G.; Wuilloud, R. G., in Quality Control in the Beverage Industry, Vol. 17, Grumezescu A.M.; Holban, A.M. Eds., Elsevier US, Cambridge, MA. 2019, 335-384. DOI: https://doi.org/10.1016/B978-0-12-816681-9.00010-2.
Rasines-Perea, Z.; Jacquet, R.; Jourdes, M.; Quideau, S.; Teissedre, P.L. Biomolecules. 2019, 9, 316. DOI: https://doi.org/10.3390/biom9080316.
Alcalde-Eon, C.; Escribano-Bailón, M. T.; García-Estévez, I. J. Agric. Food Chem. 2022, 70, 13049-13061. DOI: https://doi.org/10.1021/acs.jafc.2c00615.
Valentin, L.; Barroso, L. P.; Barbosa, R. M.; de Paulo, G. A.; Castro, I.A. Food Chem. 2020, 302, 125340. DOI: https://doi.org/10.1016/j.foodchem.2019.125340.
Versari, A.; Lauri, F. V.; Ricci, A.; Laghi, L.; Parpinello, G. P. Food Res. Int. 2014, 60, 2-18. DOI: https://doi.org/10.1016/j.foodres.2014.02.007.
Šeruga, M.; Novak, I.; Jakibek, L. Food Chem. 2011, 124, 1208-1216. DOI: https://doi.org/10.1016/j.foodchem.2010.07.047.
Sánchez, A.; Martínez-Fernández, M.; Chicharro, M. Trends Anal. Chem. 2012, 34,79-96. DOI: https://doi.org/10.1016/j.trac.2011.10.015.
Lanzelloto, C.; Favero, G.; Antonelli, M. L.; Tortolini, C.; Cannistraro, S.; Coppari, E.; Mazzei, F. Biosens. Bioelectron. 2014, 55, 430-437. DOI: http://dx.doi.org/10.1016/j.bios.2013.12.028.
Newair, E.F.; Kilmartin, P.A.; Garcia F. Eur. Food Res. Technol. 2018, 244, 1225-1237. DOI: https://doi.org/10.1007/s00217-018-3038-z.
Vázquez, E.A.; Borrego, P.N.C.; Herrera, G.A.F.; Sánchez, O.E. La industria vintivinícola Mexicana en el siglo XXI: retos económicos, sociales y ambientales. D.R. Ed. Guadalajara, 2022.
Hernández, A.L.; Alarcón, S.; Meraz, L. Int. J. Wine Bus. Res. 2022, 34, 427-446. DOI: https://doi.org/10.1108/IJWBR-02-2021-0010.
https://www.elfinanciero.com.mx/bajio/vinedos-la-redonda-mantiene-ritmo-de-crecimiento/, accessed in May 2023
https://valleredondo.com.mx/, accessed in May 2023
https://www.vinosdelmarques.com/, accessed in May 2023
Prior, R. L,; Wu, X.; Schaich, K. J. Agric. Food Chem. 2005, 53, 4290–4302. DOI: https://doi.org/10.1021/jf0502698.
Wrolstad, R. E.; Giusti, M. M., in: Current Protocols in Food Analytical Chemistry, John Wiley & Sons, Inc., 2001, F1.2.1-F1.2.13. DOI: https://doi.org/10.1002/0471142913.faf0102s00.
Tohge, T.; Yonekura-Sakakibara, V.; Niida, R.; Watanabe-Takahashi, A.; Saito, K. Pure Appl. Chem. 2007, 79, 811-823. DOI: https://doi.org/10.1351/pac200779040811,
Milovanovic, M.; Žeravík, J.; Obořil, M.; Pelcová, M.; Lacina, K.; Cakar, U.; Petrovic, A.; Glatz, Z.; Skládal, P. Food Chem. 2019, 284, 296-302. DOI: http://dx.doi.org/10.1016/j.foodchem.2019.01.113.
Fukumoto, L. R.; Mazza, G. J. Agric. Food Chem. 2000, 48, 3597–3604. DOI: https://doi.org/10.1021/jf000220w.
Nenadis, N.; Wang, L. F.; Tsimidou, V.; Zhang, H. Y. J. Agric. Food Chem. 2004, 52, 4669-4674. DOI: https://doi.org/10.1021/jf0400056.
Gutiérrez-Escobar, R.; Aliaño-González, M. J.; Cantos-Villar, E. Molecules. 2021, 26, 718. DOI: https://doi.org/10.3390/molecules26030718.
Nemser, B.; Kalita, D.; Yashin, A. Y.; Yashin, Y.I. Beverages. 2022, 8, 1. DOI: https://doi.org/10.3390/beverages8010001.
Flamini, R. ISRN Spectrosc. 2013, 813563. DOI: https://doi.org/10.1155/2013/813563.
Visioli, F.; Panaite, S. A.; Tomé-Carneiro, J. Molecules. 2020, 25, 4105. DOI: https://doi.org/10.3390/molecules25184105.
de la Cruz-de Aquino, M. A.; Martínez-Peniche, R.A.; Becerril-Román, A.E.; Chávaro-Ortiz, M. S. Rev. Fitotec. Mex. 2012, 35, 61-67.
Hermosí-Gutiérrez, I.; Sánchez-Palomo L. E.; Vicario, E. A. Food Chem. 2005, 92, 269-283. DOI:https://doi.org/10.1016/j.foodchem.2004.07.023.
Alcalde-Eon, C.; Escribano-Bailón, M. T.; Santos-Buelga, C.; Rivas-Gonzalo, J. C. Anal. Chim. Acta. 2006, 563, 238-254. DOI: https://doi.org/10.1016/j.aca.2005.11.028.
Rentzsch, M.; Schwarz, M.; Winterhalter, P.; Blanco-Vega, D.; Hermosín-Gutiérrez, I. Food Chem. 2010, 119, 1426-1434. DOI: https://doi.org/10.1016/j.foodchem.2009.09.023.
Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Molecules. 2019, 24, 3626. DOI: https://doi.org/10.3390/molecules24193626.
Mateus, N.; Silva, A. M..S.; Vercauteren, J.; de Freitas, V. J. Agric. Food Chem. 2001, 49, 4836-4840. DOI: https://doi.org/10.1021/jf001505.
Acuña-Avila, P. E.; Vásquez-Murrieta, M. S.; Franco, H. M. O.; López-Cortéz, M. S. Food Chem. 2016, 203, 79-85. DOI: https://doi.org/10.1016/j.foodchem.2016.02.031.
Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B.; Laureano, O.; Da Silva, J. M. R. J. Agric. Food Chem. 2003, 51, 6475-6481. DOI: https://doi.org/10.1021/jf030325.
Pérez-Navarro, J.; Izquierdo-Cañas, P. M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón-Vozmediano, J. L.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. J. Sci. Food Agric. 2018, 99, 2108-2123. DOI: https://doi.org/10.1002/jsfa.9403.
Rentzsch, M.; Wilkens, A.; Winterhalter, P. In Wine Chemistry and Biochemistry. Non-flavonoid Phenolic Compounds. Moreno-Arribas M.V.; Polo, M.C., Eds. Springer Science+Business Media, New York, NY., 2009, 509-527. DOI: https://doi.org/10.1007/978-0-387-74118-5_23
Raposo, R.; Chinnici, F.; Ruiz-Moreno, M. J.; Puertas, B.; Cuevas, F. J.; Carbú. M.; Guerrero, V.; Ortíz-Somovilla, R.F.; Moreno-Rojas, J. M.; Cantos-Villar, E. Food Chem. 2018, 243, 453-460. DOI: https://doi.org/10.1016/j.foodchem.2017.09.111.
Coelho, E. M.; da Silva, C. V. P.; Miskinis, G. A., de Sá, A. G. B.; Pereira, G. E.; de Azevêdo, L. C.; dos Santos, M. L. J. Food Compos. Anal. 2018, 66, 160-167. DOI: https://doi.org/10.1016/j.jfca.2017.12.017.
Huang, X-Y.; Jiang, Z-T.; Tan, J.; Li, R. J. Food Qual. 2017, 203873, 1-7. DOI: https://doi.org/10.1155/2017/2038073.
Ivanova-Petropulos, V.; Petruševa, D.; Mitrev, S. Food Anal. Methods. 2020, 13, 1078-1087. DOI: https://doi.org/10.1007/s12161-020-01724-4.
Granato, D.; Katayama, F. C. U.; Alves de Castro, I. Food Chem. 2011, 129:366-373. DOI: https://doi.org/10.1016/j.foodchem.2011.04.085.
Garuso, I.; Nardini, M. Food Chem. 2015, 179, 336-342. DOI: https://doi.org/10.1016/j.foodchem.2015.01.144.
Joshi, T.; Deepa, P. R.; Sharma, P. K. Proc. Natl. Acad. Sci., India, Sect. B. 2022, 92, 939–946. DOI: https://doi.org/10.1007/s40011-022-01396-6.
Yoo, Y. J.; Prenzler, P. D.; Saliba, A. J.; Ryan, D. J. Food Sci. 2011, 76, C1355. DOI: https://doi.org/10.1111/j.1750-3841.2011.02429.x.
Giné B. J.; Terry, L. A. Talanta. 2012, 90, 38-45. DOI: https://doi.org/10.1016/j.talanta.2011.12.058.
de Lima, A. A.; Sussuchi, E. M.; De Giovani, W. F. Croat. Chem. Acta. 2007, 80, 29-34. DOI: https://hrcak.srce.hr/12813.
Medvidović-Kosanović, M.; Šeruga, M.; Jakobek, L.; Novak, I. Croat. Chem. Acta. 2010, 83, 197-207. DOI: https://hrcak.srce.hr/56023.
Guiberteau-Cabanillas, A.; Godoy-Cancho, B.; Bernalte, E.; Tena-Villares, M.; Guibeteau-Cabanillas, C.; Martínez-Cañas, M. A. Electroanalysis. 2014, 26, 1-9. DOI: https://doi.org/10.1002/elan.201400418.
Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. J. Agric. Food Chem. 2003, 51, 5226-5231. DOI: https://doi.org/10.1021/jf034149g.
Gamella, M.; Campuzano, S.; Reviejo, A.J.; Pingarrón, J. M. J. Agric. Food Chem. 2006, 54, 7960-7967. DOI: https://doi.org/10.1021/jf061451r.
Ziyatdinova, G. K.; Saveliev, A. A.; Evtugyn, G. A.; Budnikov, H. C. Electrochim. Acta. 2014, 137, 114-120. DOI: https://doi.org/10.1016/j.electacta.2014.06.009.
Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. J. Chromatogr. A. 2019, 1601, 104-114. DOI: https://doi.org/10.1016/j.chroma.2019.06.023.
Blasco, A. J.; Rogerio, M. C.; González, M. C.; Escarpa, A. Anal. Chim. Acta. 2005, 539, 237-244. DOI: https://doi.org/10.1016/j.aca.2005.02.056.
Zhang, X-K.; Li, S-Y.; Zhao, X.; Pan, Q-H.; Shi, Y.; Duan, C-Q. Food Res. Int. 2020, 134, 109226. DOI: https://doi.org/10.1016/j.foodres.2020.109226.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Raquel Castañeda, Luis A. Godínez, Janet Ledesma-García, Pedro Vázquez-Landaverde, Guadalupe Loarca Piña, Sandra Mendoza
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.