Intermolecular Lennard-Jones (22-11)Potential Energy Surface in Dimer of N8 Cubane Cluster

Authors

  • Jamshid Najafpour Department of Chemistry, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, P.O. Box: 18155-144, Iran

DOI:

https://doi.org/10.29356/jmcs.v59i2.20

Keywords:

Nitrogen cluster, IPES, Lennard-Jones (22-11) potential, second virial coefficient, BSSE, ab initio, DFT

Abstract

We have calculated the intermolecular potential energy surface (IPES) of the dimer of cubic N8 cluster using ab initio and the density functional theory (DFT) calculations. The ab initio (HF/3- 21G(d)) and DFT (B3LYP/6-31G(d) and aug-cc-pVDZ) calculations were performed for two relative orientations of N8-N8 system as a function of separation distance between the centers of cubic N8 clusters. In this research, the IPES, U(r), of the N8-N8 system is studied, where the edge of N8 approaches to face or edge of the other considered N8. Then, the Lennard-Jones (12-6) and (22-11) adjustable parameters are fitted to the computed interaction energies for edge-face and edge-edge orientations. In this research for the first time, the IPESs proportionated to the Lennard-Jones (22-11) potential are derived that are compatible with the computed IPES curves. Assuming a set of Lennard-Jones parameters, the second virial coefficients are obtained for the N8-N8 complex at a temperature range of 298 to 1000 K. Both the corrected and uncorrected basis set superposition error (BSSE) results are presented confirming the significance of including BSSE corrections.

Downloads

Download data is not yet available.

References

Hammerl, A.; Klapotke, T. M.; Schwerdtfeger, P. Chem. Eur. J. 2003, 9, 5511-5519.

Christe, K. O. Prop. Explos. Pyrotech. 2007, 32, 194-204.

Najafpour, J.; Foroutan-Nejad, C.; Shafiee, G. H.; Kordi-Peykani, M. Computational and Theoretical Chemistry. 2011, 974, 86-91.

Dixon, D. A.; Feller, D.; Christe, K. O.; Wilson, W. W.; Vij, A.; Vij, V.; Jenkins, H. D. B.; Olson, R. M.; Gordon, M. S. J. Am. Chem. Soc. 2004, 126, 834-843.

Fau, S.; Wilson, K. J.; Bartlett, R. J. J. Phys. Chem. A 2002, 106, 4639-4644.

Ha, T. -K.; Suleimenov, O.; Nguyen, M. T. Chem. Phys. Lett. 1999, 315, 327-334.

Nguyen, M. T. Coord. Chem. Rev. 2003, 244, 93-113.

Cheng, L. P.; Li, S.; Li, Q. S. Int. J. Quant. Chem. 2004, 97, 933-943.

Gu, J. -D.; Chen, K. -X.; Jiang, H. -L.; Chen, J. -Z.; Ji, R. -Y.; Ren, Y.; Tian, A. -M. J. Mol. Struct. (THEOCHEM). 1998, 428, 183-188.

Gagliardi, L.; Evangelisti, S.; Roos, B. O.; Widmark, P. -O. J. Mol. Struct. (THEOCHEM) .1998, 428, 1-8.

Zhou, H.; Zheng, W.; Wang, X.; Ren, Y.; Wong, N. -B.; Shu, Y.; Tian, A. J. Mol. Struct. (THEOCHEM). 2005, 732, 139-148.

Sharma, H.; Garg, I.; Dharamvir, K.; Jindal, V. K. J. Phys. Chem. C. 2010, 114, 9153-9160.

Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A. 2000, 104, 5647-5650.

Hirshberg, B.; Gerber, R. B.; Krylov, A. I. Nature Chemistry. 2014, 6, 52-56.

Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem. Int. Ed. 1999, 38, 2004-2009.

Vij, A.; Wilson, W. W.; Vij, V.; Tham. F. S.; Sheehy, J. A.; Christe, K. O. J. Am. Chem. Soc. 2001, 123, 6308-6313.

Vij, A.; Pavlovich, J. G.; Wilson, W. W.; Vij, V.; Christe, K. O. Angew. Chem. Int. Ed. 2002, 41, 3051-3054.

Ostmark, H.; Wallin, S.; Brinck, T.; Carlqvist, P.; Claridge, R.; Hedlund, E.; Yudina, L. Chem. Phys. Lett. 2003, 379, 539-546.

Wilson, W. W.; Vij, A.; Vij, V.; Bernhardt, E.; Christe, K. O. Chem. Eur. J. 2003, 9, 2840-2844.

Butler, R. N.; Stephens, J. C.; Burke, L. A. Chem. Commun. 2003, 8, 1016-1017.

Schroer, T.; Haiges, R.; Schneider, S.; Christe, K. O. Chem. Commun. 2005, 12, 1607-1609.

Butler, R. N.; Hanniffy, J. M.; Stephens, J. C.; Burke, L. J. Org. Chem. 2008, 73, 1354-1364.

Engelke, R.; Stine, J. R. J. Phys. Chem. 1990, 94, 5689-5694.

Lauderdale, W. J.; Stanton, J. F.; Bartlett, R. J. J. Phys. Chem. 1992, 96, 1173-1178.

Leininger, M. L.; Sherrill C. D.; Schaefer, III, H. J. Phys. Chem. 1995, 99, 2324-2328.

Gagliardi, L.; Evangelisti1, S.; Widmark, P. O.; Roos, B. O. Theor. Chem. Acc. 1997, 97, 136-142.

Smith, L. R. J. Chem. Ed. 1978, 55, 569-570.

March, J. Advanced Organic Chemistry New York, Wiley, 1985.

Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc. 1964, 86, 3157-3158.

Li, A. H. –T.; Chaoa, S. D. J. Chem. Phys. 2006, 125, 094312.

Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553-566.

Monajjemi, M.; Khaleghian, M.; Mollaamin, F. Molecular Simulation. 2010, 36, 865-870.

Shi, Y.; Brenner, D. W. J. Chem. Phys. 2007, 127, 134503.

Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

Becke, A. D. Phys. Rev. A. 1998, 38, 3098-3100.

Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785-789.

Woon, D. E.; Dunning Jr, T. H. J. Chem. Phys. 1993, 98, 1358- 1371.

Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.

Saebo, S.; Almlof, J. Chem. Phys. Lett. 1989, 154, 83-89.

Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.

Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comp. Chem. 1983, 4, 294-301.

Hariharan, P. C. Pople, J. A. Theor. Chim. Acta. 1973, 28, 213-222.

Spartan ‘10, Version 1.1.0, Deppmeier, B. J.; Driessen, A. J.; Hehre, T. S.; Hehre, W. J.; Johnson, J. A.; Klunzinger, P. E.; Leonard, J. M.; Pham, I. N., Pietro, W. J.; Yu, Jianguo, Irvine, CA, Wavefunction, Inc., 2011.

Sordo, J. A. J. Mol. Struct. (THEOCHEM) 2001, 537, 245-251.

Mierzecki, R. Intermolecular Interactions Warsaw, PWN, 1974.

Published

2017-10-12

Issue

Section

Regular Articles