Microstructures of Binary Oxides with an Inverse Opal Structure Used as Photoelectrodes for Water Splitting
DOI:
https://doi.org/10.29356/jmcs.v67i4.1998Keywords:
Inverse opal, water splitting, template, hematite, titanium oxide, zinc oxide, copper (I) oxide, nickel sulfide, nickel oxide, photoelectrodeAbstract
Recently, the weather has experienced changes and these have affected our life style. Fossil fuels used by the human have contributed to climate change and today it is impossible to modify. Researchers have studied different kind of fuels that could use daily. Currently, hydrogen, from water splitting, is the best way to substitute the fossil fuels because water is present around the World. In photoelectrochemistry, the electrodes have a great importance. Behaviour of each semiconductor as TiO2, Fe2O3, NiO, CuO, NiS, ZnO, Cu2O, etc., give us individual efficiency respect to solar light. Also, the semiconductor chosen, type of crystallinity and superficial area are important points for achieve high in efficiency. This review shows that inverse opal has a greater contact compared to rod, cauliflower, nanotubes, etc. Different ways to deposit the polystyrene allows us gain more contact area and better photoelectrode efficiency. The main routes used to obtain binary oxides deposits, as electrophoretic, spin coating, vertical submersion, etc., help us to control polystyrene arrangement and obtain a uniform template. These techniques are discussed along this contribution.
Resumen. Recientemente, el clima ha experimentado cambios que han afectado a nuestro estilo de vida. Los combustibles fósiles utilizados por el ser humano han contribuido al cambio climático y hoy es imposible modificarlo. Los investigadores estudian diferentes tipos de combustibles que podrían utilizarse diaria y actualmente, el hidrógeno, a partir de la ruptura de la molécula de agua, es la mejor manera de sustituir los combustibles fósiles porque el agua está presente en todo el mundo. En fotoelectroquímica, los electrodos tienen una gran importancia. El comportamiento de cada semiconductor como TiO2, Fe2O3, NiO, CuO, NiS, ZnO, Cu2O, etc., tiene cada uno una eficiencia individual respecto a la luz solar que reciben. Además, del semiconductor elegido, el tipo de cristalinidad y el área superficial de este son puntos determinantes para alcanzar un alto grado de eficiencia. La presente revisión muestra que el ópalo inverso tiene un mayor contacto y eficiencia en comparación con las varillas, la coliflor, los nanotubos, etc. Diferentes formas de depositar el poliestireno como molde nos permiten obtener mayor área de contacto y mejor eficiencia del fotoelectrodo semiconductor. Las principales vías utilizadas para obtener depósitos de óxidos binarios, como electroforesis vertical, etc., nos ayudan a controlar la disposición del poliestireno y obtener una capa uniforme. Estas técnicas se discuten a lo largo de esta contribución.
Downloads
References
Rahman, G.; Najaf, Z.; Shah, A. ul H. A.; Mian, S. A. Optik (Stuttg). 2020, 200, 163454.DOI: https://doi.org/10.1016/j.ijleo.2019.163454.
Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.; Zhang, K. Q.; Lai, Y.; Lin, Z. Int. J. Hydrogen Energy. 2017, 42, 8418–8449. DOI: https://doi.org/10.1016/J.IJHYDENE.2016.12.052.
Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. J. Am. Chem. Soc. 2012, 134, 6801-6809. DOI: https://doi.org/10.1021/ja301018q.
Sharma, A.; Chakraborty, M.; Thangavel, R.; Udayabhanu, G. J. Solgel Sci. Technol. 2018, 85, 1–11. DOI: https://doi.org/10.1007/s10971-017-4536-3.
Jain, I. P. Int. J. Hydrogen Energy. 2009, 34, 7368–7378. DOI: https://doi.org/10.1016/j.ijhydene.2009.05.093.
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446–6473. DOI: https://doi.org/10.1021/cr1002326.
Crabtree, G. W.; Lewis, N. S. In: AIP Conference Proceedings 2008, Berkeley, CA, March 1-2, 2008; 1044, 309–321. https://doi.org/10.1063/1.2993729.
Nikolaidis, P.; Poullikkas, A. Renewable and Sustainable Energy Rev. 2017, 1, 597–611. DOI: https://doi.org/10.1016/j.rser.2016.09.044.
Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253–278. DOI: https://doi.org/10.1039/b800489g.
Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photonics. 2012, 6, 511–518. https://doi.org/10.1038/nphoton.2012.175.
Ameta, R.; Solanki, M. S.; Benjamin, S.; Ameta, S. C. Photocatalysis. In: Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Ameta S., Ameta R., Ed.; Academic Press, 2018; 135–175. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00006-1.
Takanabe, K. ACS Catal. 2017, 7, 8006–8022. DOI: https://doi.org/10.1021/acscatal.7b02662.
Thorne, J. E.; Li, S.; Du, C.; Qin, G.; Wang, D. J. Phys. Chem. Letters. 2015, 6, 4083–4088. DOI: https://doi.org/10.1021/acs.jpclett.5b01372.
Bockris, J. O.; Uosaki, K. J. Electrochem. Soc. 1977, 124, 98–99. DOI: https://doi.org/10.1149/1.2133256.
Cao, S.; Piao, L. Angew. Chem., Int. Ed. Engl. 2020, 59, 18312–18320. DOI: https://doi.org/10.1002/anie.202009633.
Jiang, X.; Lin, Q.; Zhang, M.; He, G.; Sun, Z. Nanoscale Res. Lett. 2015, 10. DOI: https://doi.org/10.1186/s11671-015-0755-0.
Liu, M.; Nam, C. Y.; Black, C. T.; Kamcev, J.; Zhang, L. J. Phys. Chem. C. 2013, 117, 13396–13402. DOI: https://doi.org/10.1021/jp404032p.
Young Kim, J.; Magesh, G.; Hyun Youn, D.; Jang, J.-W.; Kubota, J.; Domen, K.; Sung Lee, J. Sci. Rep. 2013, 3, 2681. DOI: https://doi.org/10.1038/srep02681.
Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C. Angew. Chem., Int. Ed. Engl. 2009, 48, 6212–6233. DOI: https://doi.org/10.1002/ANIE.200900210.
Fathi, F.; Rashidi, M. R.; Pakchin, P. S.; Ahmadi-Kandjani, S.; Nikniazi, A. Talanta. 2020, 221, 121615. DOI: https://doi.org/10.1016/J.TALANTA.2020.121615.
Zheng, X.; Han, J.; Fu, Y.; Deng, Y.; Liu, Y.; Yang, Y.; Wang, T.; Zhang, L. Highly Nano Energy. 2018, 48, 93–100. DOI: https://doi.org/10.1016/J.NANOEN.2018.03.023.
Zhou, Y.; Antonietti, M. Chem. Commun. 2003, 3, 2564–2565. DOI: https://doi.org/10.1039/b307444g.
Zhang, L.; D’Acunzi, M.; Kappl, M.; Auernhammer, G. K.; Vollmer, D.; Van Kats, C. M.; Van Blaaderen, A. Langmuir. 2009, 25, 2711–2717. DOI: https://doi.org/10.1021/la803546r.
Ghimire, P. P.; Jaroniec, M. J. Colloid Interface Sci. 2020, 584, 838–865. DOI: https://doi.org/10.1016/j.jcis.2020.10.014.
Waterhouse, G. I. N.; Chen, W. T.; Chan, A.; Sun-Waterhouse, D. ACS Omega. 2018, 3, 9658–9674. DOI: https://doi.org/10.1021/ACSOMEGA.8B01334/SUPPL_FILE/AO8B01334_SI_001.PDF.
Chen, X.; Zhang, Y.; Pang, Y.; Jiang, Q. Materials. 2020, 13, 1–10. DOI: https://doi.org/10.3390/ma13204647.
Zhang, K.; Shi, X.; Kim, J. K.; Lee, J. S.; Park, J. H. Nanoscale. 2012, 5, 1939-1944. DOI: https://doi.org/10.1039/c2nr33036a.
Nishijima, Y.; Ueno, K.; Juodkazis, S.; Mizeikis, V.; Misawa, H.; Tanimura, T.; Maeda, K. Opt Express. 2007, 15, 12979-12988. DOI: https://doi.org/10.1364/oe.15.012979.
Chung, W. A.; Hung, P. S.; Wu, C. J.; Guo, W. Q.; Wu, P. W. J. Alloys Compd. 2021, 886, 161243. DOI: https://doi.org/10.1016/J.JALLCOM.2021.161243.
Zhou, Y.; Zhao, J.; Liu, Y.; Ng, R. J. H.; Yang, J. K. W. Mater. Sci. Semicond. Process. 2021, 121, 1-8 https://doi.org/10.1016/j.mssp.2020.105444.
Sordello, F.; Maurino, V.; Minero, C. J. Mater. Chem. 2011, 21, 19144–19152. DOI: https://doi.org/10.1039/c1jm12674a.
Cho, T.-Y.; Han, C.-W.; Jun, Y.; Yoon, S.-G. Sci. Rep. 2013, 3, 1496, 1-7. DOI: https://doi.org/10.1038/srep01496.
Trang Pham, T. T.; Bessho, T.; Mathews, N.; Zakeeruddin, S. M.; Lam, Y. M.; Mhaisalkar, S.; Grätzel, M. J. Mater. Chem. 2012, 22, 16201-16204. DOI: https://doi.org/10.1039/c2jm32401f.
Abitaev, K.; Qawasmi, Y.; Atanasova, P.; Dargel, C.; Bill, J.; Hellweg, T.; Sottmann, T. Colloid Polym. Sci. 2020. 299, 243-258. DOI:https://doi.org/10.1007/s00396-020-04791-5/Published.
Zhu, H.; Zhang, Y.; Zhu, J.; Li, Y.; Jiang, S.; Wu, N.; Wei, Y.; Zhou, J.; Song, Y. J. Mater. Chem. A Mater. 2020, 8, 22929-22937. DOI: https://doi.org/10.1039/d0ta06975b.
Gaulding, E. A.; Liu, G.; Chen, C. T.; Löbbert, L.; Li, A.; Segev, G.; Eichhorn, J.; Aloni, S.; Schwartzberg, A. M.; Sharp, I. D.; Toma, F. M. J. Mater. Chem. A Mater. 2017, 5, 11601-11614. DOI: https://doi.org/10.1039/c7ta00512a.
Qu, H. Y.; Wang, J.; Montero, J.; Li, Y.; Österlund, L.; Niklasson, G. A. J. Appl. Phys. 2021, 129, 1-11. DOI: https://doi.org/10.1063/5.0043673.
Kousik, S. R.; Sipp, D.; Abitaev, K.; Li, Y.; Sottmann, T.; Koynov, K.; Atanasova, P. Nanomaterials. 2021, 11, 196, 1-18. DOI: https://doi.org/10.3390/nano11010196.
Wang, T.; Yu, Q.; Zhang, S.; Kou, X.; Sun, P.; Lu, G. Nanoscale. 2018, 10, 4841–4851. DOI: https://doi.org/10.1039/c7nr08366a.
Li, Q.; Yang, C. Mater Lett. 2017, 199, 168–171. DOI: https://doi.org/10.1016/J.MATLET.2017.04.058.
Meng, S.; Li, D.; Wang, P.; Zheng, X.; Wang, J.; Chen, J.; Fang, J.; Fu, X. P RSC Adv. 2013, 3, 17021-17028. DOI: https://doi.org/10.1039/c3ra42618a.
Lin, X.; Chen, M. Appl. Sci. 2016, 6, 259, 1-10. DOI: https://doi.org/10.3390/app6100259.
Zhou, Q.; Pu, J.; Sun, X.; Zhu, C.; Li, J.; Wang, J.; Chang, S.; Zhang, H. I J. Mater. Chem. A Mater. [Online] 2017, 5, 14873–14880. DOI: https://doi.org/10.1039/c7ta03044d.
Tran, G. T. H.; Koike, M.; Uchikoshi, T.; Fudouzi, H. Adv. Powder Technol. 2020, 31, 3085–3092. DOI: https://doi.org/10.1016/J.APT.2020.05.029.
Rogach, A. L.; Kotov, N. A.; Koktysh, D. S.; Ostrander, J. W.; Ragoisha, G. A. Chem. Mater. 2000, 12, 2721-2726. DOI: https://doi.org/10.1021/cm000274l.
Galle, L.; Ehrling, S.; Lochmann, S.; Kaskel, S.; Bischoff, L.; Grothe, J. ChemNanoMat. 2020, 6, 560-566. DOI: https://doi.org/10.1002/cnma.201900731.
Li, Z. Y.; Zhang, Z. Q. Phys. Rev. B Condens. Matter. Mater. Phys. 2000, 62, 1516-1519. https://doi.org/10.1103/PhysRevB.62.1516.
Stöber, W.; Fink, A.; Bohn, J. Colloid. Interface Sci. 1968, 26, 62–69. DOI: https://doi.org/10.1016/0021-9797(68)90272-5.
Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondla, J. P.; Ozin, G. A.; Toader, O.; Van Driel, H. M. Nature. 2000, 405, 437-440. DOI: https://doi.org/10.1038/35013024.
Salvarezza, R. C.; Vázquez, L.; Míguez, H.; Mayoral, R.; López, C.; Meseguer, F. Phys. Rev. Lett. 1996, 77, 4572-4575. DOI: https://doi.org/10.1103/PhysRevLett.77.4572.
Salinas, G.; Frontana-Uribe, B. A.; Reculusa, S.; Garrigue, P.; Kuhn, A. Anal. Chem. 2018, 90, 11770–11774. DOI: https://doi.org/10.1021/acs.analchem.8b03779.
Yi, D. K.; Lee, J. H.; Rogers, J. A.; Paik, U. Appl. Phys. Lett. 2009, 94. DOI: https://doi.org/10.1063/1.3089219.
Song, T.; Jeon, Y.; Samal, M.; Han, H.; Park, H.; Ha, J.; Yi, D. K.; Choi, J. M.; Chang, H.; Choi, Y. M.; Paik, U. Energy Environ. Sci. 2012, 5, 9028–9033. DOI: https://doi.org/10.1039/c2ee22358a.
Waleczek, M.; Dendooven, J.; Dyachenko, P.; Petrov, A. Y.; Eich, M.; Blick, R. H.; Detavernier, C.; Nielsch, K.; Furlan, K. P.; Zierold, R. Nanomaterials. 2021, 11, 1-16. DOI: https://doi.org/10.3390/nano11041053.
Kim, K. H.; Yoon, K. H.; Yun, J. H.; Ahn, B. T. Electrochem. Solid-State Lett. 2006, 9, A382-A385. DOI: https://doi.org/10.1149/1.2208011.
Shin, S. S.; Kim, K.; Yoo, J.; Kim, J. H.; Ahn, S.; Cho, A.; Kim, D.; Jo, Y.; Jeong, I.; Shin, D.; Cho, J. S.; Yun, J. H.; Park, J.; Park, J. H. Solar Energy Mater. Solar Cells. 2021, 224, 1-11. DOI: https://doi.org/10.1016/J.SOLMAT.2021.111010.
Scharrer, M.; Wu, X.; Yamilov, A.; Cao, H.; Chang, R. P. H. Appl. Phys. Lett. 2005, 86, 151113. DOI: https://doi.org/10.1063/1.1900957.
Gong, X.; Lou, X.; Kim, S. B.; Gordon, R. G. ACS Appl. Electron. Mater. 2021, 3, 845-853. DOI: https://doi.org/10.1021/acsaelm.0c00977.
Mandati, S.; Sarada, B. V.; Dey, S. R.; Joshi, S. V. Pulsed Electrochemical Deposition of CuInSe2 and Cu(In,Ga)Se2 Semiconductor Thin Films. in: Semiconductors - Growth and Characterization; Inguanta R. and Sunseri C., Ed.; InTech: United Kingdom, 2018; Chapter 6. DOI: https://doi.org/10.5772/intechopen.71857.
Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q. Energy Environ. Sci. 2011, 4, 2630-2637. DOI:https://doi.org/10.1039/c0ee00791a (.
Park, J. Y.; Kim, S.; Hong, D. M.; Lim, J. W.; Yoo, C. J.; Dong, W. J.; Lee, J. L. Electron. Mater. Lett. 2019, 15, 454–461. DOI: https://doi.org/10.1007/s13391-019-00145-8.
Wang, J.; Zhou, H.; Nanda, J.; Braun, P. V. Chem. Mater. 2015, 27, 2803–2811. DOI: https://doi.org/10.1021/cm504365s.
Fei, J. Y.; Wilcox, G. D. Electrochim. Acta. 2005, 50, 2693–2698. DOI: https://doi.org/10.1016/j.electacta.2004.11.014.
Zhao, J.; Sun, L.; Canepa, S.; Sun, H.; Yesibolati, M. N.; Sherburne, M.; Xu, R.; Sritharan, T.; Loo, J. S. C.; Ager, J. W.; Barber, J.; Mølhave, K.; Xu, Z. J. J. Mater. Chem. A Mater. 2017, 5, 11905-11916. DOI: https://doi.org/10.1039/c7ta01871a.
Golden, T. D.; Shumsky, M. G.; Zhou, Y.; VanderWerf, R. A.; Van Leeuwen, R. A.; Switzer, J. A. Chem. Mater. 1996, 8, 2499-2509. DOI: https://doi.org/10.1021/cm9602095.
Zhang, Z.; Kitada, A.; Fukami, K.; Yao, Z.; Murase, K. Electrochim. Acta. 2020, 348, 136289-1-136289-10. DOI: https://doi.org/10.1016/j.electacta.2020.136289.
Pham, K.; Temerov, F.; Saarinen, J. J. Mater. Des. 2020, 194, 108886. DOI: https://doi.org/10.1016/J.MATDES.2020.108886.
Tello, A.; Boulett, A.; Sánchez, J.; Pizarro, G. del C.; Soto, C.; Linarez Pérez, O. E.; Sanhueza, R.; Oyarzún, D. P. Chem. Phys. Lett. 2021, 778, 138825. DOI: https://doi.org/10.1016/J.CPLETT.2021.138825.
Li, L.; Zhai, T.; Bando, Y.; Golberg, D. Nano Energy. 2011, 91–106. DOI: https://doi.org/10.1016/j.nanoen.2011.10.005.
Zhang, C.; Shao, M.; Ning, F.; Xu, S.; Li, Z.; Wei, M.; Evans, D. G.; Duan, X. Au Nano Energy. 2015, 12, 231–239. DOI: https://doi.org/10.1016/J.NANOEN.2014.12.037.
Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Adv. Funct. Mater. 2009, 19, 1849-1856. DOI:https://doi.org/10.1002/adfm.200801363.
Subalakshmi, K.; Senthilselvan, J.; Kumar, K. A.; Kumar, S. A.; Pandurangan, A. J. Mater. Sci.: Mater. Electron. 2017, 28, 15565–15595. DOI: https://doi.org/10.1007/s10854-017-7445-x.
(73) Tantray, A. M.; Shah, M. A. Chem. Pap. 2020, 75, 1739–1747. https://doi.org/10.1007/s11696-020-01419-4.
Lv, R.; Wang, T.; Su, F.; Zhang, P.; Li, C.; Gong, J. Nano Energy. 2014, 7, 143–150. DOI: https://doi.org/10.1016/J.NANOEN.2014.04.020.
Zhang, B.; Wang, F.; Zhu, C.; Li, Q.; Song, J.; Zheng, M.; Ma, L.; Shen, W. Nano-Micro Lett. 2016, 8, 137-142. DOI: https://doi.org/10.1007/s40820-015-0068-y.
Guo, J. H.; Vayssieres, L.; Persson, C.; Ahuja, R.; Johansson, B.; Nordgren, J. J. Phys. Condens. Matter. 2002, 14, 6969-6974. DOI: https://doi.org/10.1088/0953-8984/17/1/022.
Galsin, J. S. in: Solid State Physics: An Introduction to Theory; 1st ed.; Academic Press; United Kingdom, 2019; 1. DOI: https://doi.org/10.1016/C2018-0-01175-5.
Shetty, A.; Nanda, K. K. Appl. Phys. A Mater. Sci. Process. 2012, 109, 151–157. DOI: https://doi.org/10.1007/s00339-012-7023-2.
Gilani, S.; Ghorbanpour, M.; Parchehbaf Jadid, A. J. Nanostruct. Chem. 2016, 6, 183–189. DOI: https://doi.org/10.1007/s40097-016-0194-1.
Basu, P. K.; Saha, N.; Maji, S.; Saha, H.; Basu, S. J. Mater. Sci. Mater. Electron. 2008, 19, 493–499. DOI: https://doi.org/10.1007/s10854-008-9604-6.
Mika, K.; Socha, R. P.; Nyga, P.; Wiercigroch, E.; Małek, K.; Jarosz, M.; Uchacz, T.; Sulka, G. D.; Zaraska, L. Electrochim. Acta. 2019, 305, 349–359. DOI: https://doi.org/10.1016/J.ELECTACTA.2019.03.052.
He, S.; Zheng, M.; Yao, L.; Yuan, X.; Li, M.; Ma, L.; Shen, W. P Appl. Surf. Sci. 2010, 256, 2557–2562. https://doi.org/10.1016/J.APSUSC.2009.10.104.
Kim, S. J.; Choi, J. Electrochem. Commun. 2007, 10, 175–179. DOI: https://doi.org/10.1016/j.elecom.2007.11.014.
Goh, H. S.; Adnan, R.; Farrukh, M. A. Turk. J. Chem. 2011, 35, 375–391. DOI: https://doi.org/10.3906/kim-1010-742.
Ramirez-Canon, A.; Miles, D. O.; Cameron, P. J.; Mattia, D. RSC Adv. 2013, 3, 25323-25330. DOI: https://doi.org/10.1039/c2ra43886d.
Farrukh, M. A.; Thong, C. K.; Adnan, R.; Kamarulzaman, M. A. Russ. J. Phys. Chem. A. 2012, 86, 2041–2048. DOI: https://doi.org/10.1134/S0036024412130171.
Zhao, J.; Wang, X.; Liu, J.; Meng, Y.; Xu, X.; Tang, C. Mater. Chem. Phys. 2011, 126, 555–559. DOI: https://doi.org/10.1016/j.matchemphys.2011.01.028.
Hu, Z.; Chen, Q.; Li, Z.; Yu, Y.; Peng, L. M. J. Phys. Chem. C. 2009, 114, 881–889. DOI: https://doi.org/10.1021/jp9094744.
Miles, D. O.; Cameron, P. J.; Mattia, D. J. Mater. Chem. A Mater. 2015, 3, 17569–17577. DOI: https://doi.org/10.1039/c5ta03578c.
Park, J.; Kim, K.; Choi, J. Curr. Appl. Phys. 2013, 13, 1370–1375. DOI: https://doi.org/10.1016/j.cap.2013.04.015.
Mateen Tantray, A.; Shah, M. A. Chem. Phys. Lett. 2020, 747, 137346. DOI: https://doi.org/10.1016/j.cplett.2020.137346.
Batista-Grau, P.; Sánchez-Tovar, R.; Fernández-Domene, R. M.; García-Antón, J. Surf. Coat Technol. 2019, 381, 125197. DOI: https://doi.org/10.1016/j.surfcoat.2019.125197.
Kim, S. J.; Lee, J.; Choi, J. Electrochim. Acta. 2008, 53, 7941–7945. DOI: https://doi.org/10.1016/j.electacta.2008.06.006.
Ilyas, U.; Rawat, R. S.; Tan, T. L.; Lee, P.; Chen, R.; Sun, H. D.; Fengji, L.; Zhang, S. J. Appl. Phys. 2011, 110, 093522. DOI: https://doi.org/10.1063/1.3660284.
Juárez, B. H.; García, P. D.; Golmayo, D.; Blanco, A.; López, C. Adv. Mater. 2005, 17, 2761–2765. DOI:https://doi.org/10.1002/adma.200500569.
Wang, B. S.; Li, R. Y.; Zhang, Z. Y.; Xing-Wang; Wu, X. L.; Cheng, G. A.; Zheng, R. T. Catal Today. 2019, 321-322,100–106. DOI: https://doi.org/10.1016/j.cattod.2018.02.028.
Sayão, F. A.; Martins, A. S.; da Silva, J. J.; Boldrin Zanoni, M. V. J. Electrochem. Soc. 2021, 168, 076503. DOI: https://doi.org/10.1149/1945-7111/ac0ec5.
Muniyappa, M.; N. Kalegowda, S.; Shetty, M.; Sriramoju, J. B.; Shastri, M.; Navakoteswara, N. R.; De, D.; M.V., S.; Rangappa, D. Int. J. Hydrogen Energy. 2021, 47, 5307–5318. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.171 (.
Goh, S. W.; Buckley, A. N.; Lamb, R. N.; Skinner, W. M.; Pring, A.; Wang, H.; Fan, L. J.; Jang, L. Y.; Lai, L. J.; Yang, Y. W. Phys. Chem. Miner. 2006, 33, 98–105. DOI: https://doi.org/10.1007/s00269-006-0058-1.
Shombe, G. B.; Khan, M. D.; Zequine, C.; Zhao, C.; Gupta, R. K.; Revaprasadu, N. Sci. Rep. 2020, 10, 3260. DOI: https://doi.org/10.1038/s41598-020-59714-9.
Youn, J.-S.; Jeong, S.; Oh, I.; Park, S.; Mai, H. D.; Jeon, K.-J. Catalysts. 2020, 10, 1274. DOI: https://doi.org/10.3390/catal10111274.
Yang, X.; Zhou, L.; Feng, A.; Tang, H.; Zhang, H.; Ding, Z.; Ma, Y.; Wu, M.; Jin, S.; Li, G. J. Mater. Res. 2014, 29, 935–941. DOI: https://doi.org/10.1557/jmr.2014.74.
Dai, Z.; Xue, L.; Zhang, Z.; Gao, Y.; Wang, J.; Gao, Q.; Chen, D. Energy Fuels. 2020, 34, 10178–10187. DOI: https://doi.org/10.1021/acs.energyfuels.0c01797.
Shankar, A.; Elakkiya, R.; Maduraiveeran, G. New J. Chem. 2020, 44, 5071-5078. DOI: https://doi.org/10.1039/d0nj00192a.
Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Chem. Eng. J. 2016, 308, 1165–1173. DOI: https://doi.org/10.1016/j.cej.2016.10.016.
Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. J. Power Sources. 2009, 190, 578–586. DOI: https://doi.org/10.1016/j.jpowsour.2009.01.052.
Li, Y.; Ye, K.; Cheng, K.; Yin, J.; Cao, D.; Wang, G. J .Power Sources. 2014, 274, 943–950. DOI:https://doi.org/10.1016/j.jpowsour.2014.10.156.
Zhu, B. T.; Wang, Z.; Ding, S.; Chen, J. S.; Lou, X. W. RSC Adv. 2011, 1, 397–400. DOI: https://doi.org/10.1039/c1ra00240f.
Yu, L.; Yang, B.; Liu, Q.; Liu, J.; Wang, X.; Song, D.; Wang, J.; Jing, X. J. Electroanal. Chem. 2014, 739, 156–163. DOI: https://doi.org/10.1016/j.jelechem.2014.12.031.
Tang, S.; Vongehr, S.; Wang, Y.; Cui, J.; Wang, X.; Meng, X. J. Mater. Chem. A Mater. 2014, 2, 3648–3660. DOI: https://doi.org/10.1039/c3ta14541g.
Alegría, M.; Aliaga, Juan; Luis Ballesteros, Sotomayor-Torres, C.; González, G.; Top Catal. 2021, 64, 167–180. DOI: https://doi.org/10.1007/s11244-020-01360-6.
Panzeri, G.; Cristina, M.; Jagadeesh, M. S.; Bussetti, G.; Magagnin, L. Sci. Rep. 2020, 10, 18730. DOI: https://doi.org/10.1038/s41598-020-75700-7.
Das, C.; Singh, A. K.; Heo, Y.; Aggarwal, G.; Maurya, S. K.; Seidel, J.; Kavaipatti, B. J. Phys. Chem. C. 2018, 122. DOI: https://doi.org/10.1021/acs.jpcc.7b10103.
Li, X.; Jiang, Y.; Shi, Z.; Xu, Z. Chem. Mater. 2007, 19, 5424-5430. DOI: https://doi.org/10.1021/cm071180f.
Chung, W. A.; Wu, C. J.; Hung, P. S.; Chou, S. C.; Guo, W. Q.; Wu, P. W. J Taiwan Inst. Chem. Eng. 2021, 119, 277–285. DOI: https://doi.org/10.1016/J.JTICE.2021.01.027.
Wan, C.; Jiao, Y.; Li, J. J. Mater. Chem. A Mater. 2017, 5, 17267-17278. DOI: https://doi.org/10.1039/c7ta04994c.
Chen, L.; Zhang, Y.; Zhu, P.; Zhou, F.; Zeng, W.; Daniel Lu, D.; Sun, R.; Wong, C. Sci. Rep. 2015, 5, 9672. DOI: https://doi.org/10.1038/srep09672.
Ahmad, W. R. W.; Mamat, M. H.; Khusaimi, Z.; Ismail, A. S.; Rusop, M. Indonesian J. Electr. Eng. Comput. Sci. 2018, 13, 1079–1086. DOI: https://doi.org/10.11591/ijeecs.v13.i3.pp1079-1086.
Shi, X.; Zhang, K.; Shin, K.; Moon, J. H.; Lee, T. W.; Park, J. H. Phys. Chem. Chem. Phys. 2013, 15. 11717-1722. DOI: https://doi.org/10.1039/c3cp50459j.
Mao, A.; Han, G. Y.; Park, J. H. J. Mater. Chem. 2010, 20, 2247–2250. DOI: https://doi.org/10.1039/B921965J.
Qiu, W. T.; Huang, Y. C.; Wang, Z. L.; Xiao, S.; Ji, H. B.; Tong, Y. X. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. Beijing University Press. 2017, 33, 80–102. DOI: https://doi.org/10.3866/PKU.WHXB201607293.
Ahn, H.-J.; Yoon, K.-Y.; Kwak, M.-J.; Jang, J.-H. Angew. Chem., Int. Ed. Engl. 2016, 128, 10076–10080. DOI: https://doi.org/10.1002/ange.201603666 (.
Shinde, P. S.; Annamalai, A.; Kim, J. Y.; Choi, S. H.; Lee, J. S.; Jang, J. S. Fine- J. Phys. Chem. C. 2015, 119, 5281–5292. DOI: https://doi.org/10.1021/jp5100186.
Smart, T. J.; Ping, Y. J. Phys. Condens. Matter. 2017, 29, 394006. DOI: https://doi.org/10.1088/1361-648X/aa7e3d.
Finger, L. W.; Hazen, R. M. J. Appl. Phys. 1980, 51, 5362–5367. DOI: https://doi.org/10.1063/1.327451.
Gilbert, B.; Frandsen, C.; Maxey, E. R.; Sherman, D. M. Phys. Rev. B Condens. Matter. Mater. Phys. 2009, 79, 035108. DOI: https://doi.org/10.1103/PhysRevB.79.035108.
Coey, J. M. D.; Sawatzkyt, G. A. J. Phys. C. Solid State Phys. 1971, 4, 2386-2407. DOI: https://doi.org/10.1088/0022-3719/4/15/025.
Cai, J.; Liu, H.; Liu, C.; Xie, Q.; Xu, L.; Li, H.; Wang, J.; Li, S. Appl Surf Sci. 2021, 568, 150606. DOI: https://doi.org/10.1016/j.apsusc.2021.150606.
Yi, S. S.; Wang, Z. Y.; Li, H. M.; Zafar, Z.; Zhang, Z. T.; Zhang, L. Y.; Chen, D. L.; Liu, Z. Y.; Yue, X. Z. Appl. Catal. B. 2021, 283, 119649. DOI: https://doi.org/10.1016/j.apcatb.2020.119649.
Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Angew. Chem., Int. Ed. Engl. 2010, 49, 6405–6408. DOI: https://doi.org/10.1002/anie.201003110.
Mir, J. F.; Rubab, S.; Shah, M. A. Chem. Phys. Lett. 2020, 741, 137088. DOI: https://doi.org/10.1016/j.cplett.2020.137088.
Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048–3055. DOI: https://doi.org/10.1021/cm8030208.
Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. J. Am. Chem. Soc. 2010, 132, 7436–7444. DOI: https://doi.org/10.1021/ja101564f.
Maabong, K.; Machatine, A. G. J.; Mwankemwa, B. S.; Braun, A.; Bora, D. K.; Toth, R.; Diale, M. Phys. B Condens. Matter. 2018, 535, 67–71. DOI: https://doi.org/10.1016/j.physb.2017.06.054.
Yilmaz, C.; Unal, U. RSC Adv. 2015, 5, 16082–16088. DOI: https://doi.org/10.1039/c4ra16028b.
Shinde, P. S.; Go, G. H.; Lee, W. J. J. Mater. Chem. 2012, 22, 10469–10471. DOI: https://doi.org/10.1039/c2jm31254a.
Saremi-Yarahmadi, S.; Vaidhyanathan, B.; Wijayantha, K. G. U. Int. J. Hydrogen Energy. 2010, 35, 10155–10165. DOI: https://doi.org/10.1016/j.ijhydene.2010.08.004.
Phuan, Y. W.; Chong, M. N.; Zhu, T.; Yong, S. T.; Chan, E. S. Mater. Res. Bull. 2015, 69, 71–77. DOI: https://doi.org/10.1016/j.materresbull.2014.12.059.
Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 2119–2125. DOI: https://doi.org/10.1021/nl200708y.
Roose, B.; Pathak, S.; Steiner, U. Chem. Soc. Rev. 2015, 44, 8326-8349. DOI: https://doi.org/10.1039/c5cs00352k.
Han, X.; Shao, G. J. Phys. Chem. C. 2011, 115, 8274-8282. DOI: https://doi.org/10.1021/jp1106586.
Yang, X.; Wu, X.; Li, J.; Liu, Y. TiO 2-Au RSC Adv. 2019, 9, 29097-29104. DOI: bhttps://doi.org/10.1039/c9ra05113a.
Yew, R.; Karuturi, S. K.; Liu, J.; Tan, H. H.; Wu, Y.; Jagadish, C. Opt. Express. 2019, 27, 761-773. DOI: https://doi.org/10.1364/oe.27.000761.
Spathis, P.; Karagiannidou, E.; Magoula-a3, A.-E. Stud. Consev. 2003, 48, 57–64. DOI: https://doi.org/10.1179/sic.2003.48.1.57.
Qian, Y.; Du, J.; Kang, D. J. Microporous Mesoporous Mater. 2019, 273, 148–155. DOI: https://doi.org/10.1016/J.MICROMESO.2018.06.056.
He, X.; Yang, C. P.; Zhang, G. L.; Shi, D. W.; Huang, Q. A.; Xiao, H. B.; Liu, Y.; Xiong, R. Mater. Des. 2016, 106, 74–80. DOI: https://doi.org/10.1016/J.MATDES.2016.05.025.
Ramadoss, A.; Kim, S. J. J. Alloys Compd. 2013, 561, 262–267. DOI: https://doi.org/10.1016/J.JALLCOM.2013.02.015.
Selvakumar, M.; Bhat, D. K. Appl. Surf. Sci. 2012, 263, 236–241. DOI: https://doi.org/10.1016/J.APSUSC.2012.09.036.
Hamed S. H. K. M. S. P. Thesis. Sudan University of Science & Technology (SUST), Faculty of Science-Department of Physics, Sep 2017. https://api.semanticscholar.org/CorpusID:55193279, accessed September 2019.
El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. DOI: https://doi.org/10.1016/J.MSSP.2013.05.018.
Koussi-Daoud, S.; Majerus, O.; Schaming, D.; Pauporté, T. Electrochim. Acta. 2016, 219, 638–646. DOI: https://doi.org/10.1016/j.electacta.2016.10.074.
Marrani, A. G.; Novelli, V.; Sheehan, S.; Dowling, D. P.; Dini, D. ACS Appl. Mater. Interfaces. 2014, 6, 143-152. DOI: https://doi.org/10.1021/am403671h.
Belousov, A. L.; Patrusheva, T. N.; Karacharov, A. A.; Ivanenko, A. A.; Kirik, S. D.; Khol’kin, A. I. Theor. Found. Chem. Eng. 2020, 54, 699–705. DOI: https://doi.org/10.1134/S0040579520040041.
Diao, C. C.; Huang, C. Y.; Yang, C. F.; Wu, C. C. Nanomaterials. 2020, 10, 636. DOI: https://doi.org/10.3390/nano10040636.
Ma, J.; Yang, J.; Jiao, L.; Mao, Y.; Wang, T.; Duan, X.; Lian, J.; Zheng, W. NiO CrystEngComm. 2012, 14, 453–459. DOI: https://doi.org/10.1039/c1ce05567d.
Tamirat, A. G.; Rick, J.; Dubale, A. A.; Su, W. N.; Hwang, B. J. Nanoscale Horiz. Royal Soc. Chem. 2016, 243–267. DOI: https://doi.org/10.1039/c5nh00098j.
Beranek, R.; Kisch, H. Electrochem. Commun. 2007, 9, 761–766. DOI: https://doi.org/10.1016/j.elecom.2006.11.011.
Gai, Y.; Li, J.; Li, S. S.; Xia, J. B.; Wei, S. H. Phys. Rev. Lett. 2009, 102, 036402. DOI: https://doi.org/10.1103/PhysRevLett.102.036402.
Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. J. Power Sources. 2008, 181, 46–55. DOI: https://doi.org/10.1016/j.jpowsour.2007.10.082.
Sasi, B.; Gopchandran, K. G. Sol. Energy Mater. Sol. Cells. 2007, 91, 1505–1509. DOI: https://doi.org/10.1016/j.solmat.2007.04.019.
Sahoo, P.; Sharma, A.; Padhan, S.; Thangavel, R. Superlattices Microstruct. 2021, 159, 107050. DOI: https://doi.org/10.1016/j.spmi.2021.107050.
Yoo, J.; Kwak, I. H.; Kwon, I. S.; Park, K.; Kim, D.; Lee, J. H.; Lim, S. A.; Cha, E. H.; Park, J. J. Mater. Chem. C Mater. 2020, 8, 3240–3247. DOI: https://doi.org/10.1039/c9tc05703j.
Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Angew. Chem., Int. Ed. Engl. 2014, 53, 102–121. DOI: https://doi.org/10.1002/anie.201306588.
Krol, R. Van de; Grätzel, M. Electronic Materials: Science & Technology. In: Photoelectrochemical Hydrogen Production; New York: USA. 2012.
Hellman, A.; Wang, B. Inorganics. 2017, 5, 2-27. DOI: https://doi.org/10.3390/inorganics5020037.
Iandolo, B.; Wickman, B.; Zorić, I.; Hellman, A. J. Mater. Chem. A Mater. 2015, 3, 16896-16912. DOI: https://doi.org/10.1039/c5ta03362d.
Pan, J.; Fu, Y.; Xiao, G.; Niu, J.; Cao, J.; Wang, J.; Zheng, Y.; Li, C. J. Environ. Chem. Eng. 2022, 10, 108587. DOI: https://doi.org/10.1016/j.jece.2022.108587.
Ma, L.; Xu, J.; Liu, Z.; Liu, Y.; Liu, X.; Xu, S. J. Mater. Sci. 2022, 57, 6734–6748. DOI: https://doi.org/10.1007/s10853-022-07064-4.
Yoon, S.; Kim, M.; Kim, I. S.; Lim, J. H.; Yoo, B. J. Mater. Chem. A Mater. 2014, 2, 11621–11627. DOI: https://doi.org/10.1039/c4ta00616j.
Hsu, Y. K.; Yu, C. H.; Chen, Y. C.; Lin, Y. G. Electrochim. Acta. 2013, 105, 62–68. DOI: https://doi.org/10.1016/j.electacta.2013.05.003 .
Yang, Y.; Xu, D.; Wu, Q.; Diao, P. Sci. Rep. 2016, 6, 35158. DOI: https://doi.org/10.1038/srep35158.
Grez, P.; Henríquez, R.; Muñoz, E.; Rojas, C.; Moreno, S.; Sessarego, G.; Heyser, C.; Celedón, C.; Schrebler, R. Int. J. Electrochem. Sci. 2016, 14, 5646-5653. DOI: https://doi.org/10.20964/2019.06.03.
Nian, J. N.; Hu, C. C.; Teng, H. Int. J. Hydrogen Energy. 2008, 33, 2897–2903. DOI: https://doi.org/10.1016/j.ijhydene.2008.03.052.
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Bernardo A. Frontana-Uribe, Manuel Humberto Ríos-Domínguez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.