Electrochemical Oxidation of Bentazon at Boron-doped Diamond Anodes: Implications of Operating Conditions in Energy Usage and Process Greenness
DOI:
https://doi.org/10.29356/jmcs.v67i4.1997Keywords:
Bentazon; boron-doped diamond, electrochemical oxidation, process greenness, sustainable energy mixAbstract
Abstract. We studied the mineralization of the herbicide bentazon (Bn) through advanced electro-oxidation using a non-divided modified Diachem® cell. The treatment system consisted of an array of three boron-doped diamond (BDD) electrodes: cathode-anode-cathode. The chosen variables of interest were current density (j = 0.5, 1.0, and 1.5 mA cm-2), the initial Bn concentration (10, 50, and 100 mg L-1), and the volumetric flow (v = 280, 500, and 750 mL min-1). In all cases, a 0.04 M Na2SO4 and 0.05 M NaHSO4 (pH ~ 2) solution was used as the supporting electrolyte. Results indicate that, at low current densities, up to 86 % of the Bn present in the solution can be removed (j = 1.0 mA cm-2 and v = 500 mL min-1); however, additional increases in j (from 1.0 to 1.5 mA cm-2) slightly increase (2-3 %) the removal efficiency but increase 55 % the carbon footprint and the treatment cost. Likewise, increases in the volumetric flow from 500 to 750 mL min-1 marginally affect the elimination of Bn and the removal of total organic carbon (TOC) in 1% and 4 %, respectively. The highest efficiencies for TOC (68 %) and COD (82 %) removals were obtained with the following operational conditions: j = 1.0 mA cm-2 and v = 750 mL min-1. Values obtained for the instantaneous current efficiency (ICE) showed an exponential reduction, suggesting that mass transfer influences importantly the efficiency of the process.
Resumen. En este trabajo se estudió la mineralización del herbicida bentazón (Bn) por medio de electroooxidación avanzada utilizando una celda no dividida Diachem® modificada. El sistema de tratamiento consta de un arreglo de tres electrodos de diamante dopado con boro (BDD): cátodo-ánodo-cátodo. Las variables de interés seleccionadas fueron: la densidad de corriente (j = 0.5, 1.0 y 1.5 mA cm-2), la concentración inicial de Bn (10, 50 y 100 mg L-1) y el flujo volumétrico (v = 280, 500 y 750 mL min-1). En todos los casos se usó como electrolito soporte una solución de 0.04 M Na2SO4 y 0.05 M de NaHSO4 (pH ~ 2). Los resultados obtenidos indican que, a bajas densidades de corriente, se puede remover hasta el 86 % del Bn presente en solución (j = 1.0 mA cm-2 y v = 500 mL min-1); sin embargo, aumentos adicionales en j (de 1.0 a 1.5 mA cm-2) elevan ligeramente la eficiencia de remoción (2-3 %) pero incrementan hasta en un 55% la huella de carbono y el costo de tratamiento. De igual forma, incrementos en el flujo volumétrico de 500 a 750 mL min-1 afectan de forma marginal la eliminación del Bn y la remoción del carbono orgánico total (TOC) en un 1 % y 4 %, respectivamente. Las mayores eficiencias de remoción de TOC (68 %) y COD (82 %) se obtuvieron con las siguientes condiciones operativas: j = 1.0 mA cm-2 y v = 750 mL min-1. Los valores obtenidos de la eficiencia de corriente instantánea (ICE) presentaron una reducción exponencial, lo cual sugiere que la transferencia de masa tiene una influencia importante en la eficiencia del proceso.
Downloads
References
Kaur, G. Int. J. Environ., Agr. Biotechnol. 2019, 4, 995–1004. DOI: http://dx.doi.org/10.22161/ijeab.4416.
Qu, R. Y.; He, B.; Yang, J. F.; Lin, H. Y.; Yang, W. C.; Wu, Q. Y.; Li, Q. X.; Yang, G. F. Pestic. Sci. 2021, 77, 2620–2625 DOI: https://doi.org/10.1002/ps.6285.
United Nations. Department of Economic and Social Affairs. 2022.
Centanni, M.; Ricci, G. F.; de Girolamo, A. M.; Romano, G.; Gentile, F. Environ. Pollut. 2023, 316, 120553. DOI: https://doi.org/10.1016/j.envpol.2022.120553.
Li, Z.; Wu, Y.; Wang, C. Environmental Management. 2022 DOI: https://doi.org/10.1007/s00267-022-01717-5.
Singh, S.; Tiwari, S. Responses of plants to herbicides: Recent advances and future prospectives. in Plant Life under Changing Environment: Responses and Management. Academic Press: Cambridge, MA, USA, 2020, 237–250. DOI: https://doi.org/10.1016/B978-0-12-818204-8.00011-4.
Ania, C. O.; Béguin, F. Water Res. 2007, 41, 3372–3380. DOI: https://doi.org/10.1016/j.watres.2007.03.031.
Ponce-Vejar, G.; Ramos de Robles, S. L.; Macias-Macias, J. O.; Petukhova, T.; Guzman-Novoa, E. Int. J. Environ. Res. Public Health. 2022, 19, 8199. DOI: https://doi.org/10.3390/ijerph19138199.
Liu, Y.; Sun, T.; Su, Q.; Tang, Y.; Xu, X.; Akram, M.; Jiang, B. J. Colloid Sci. 2020, 575, 254–264. DOI: https://doi.org/10.1016/j.jcis.2020.04.092.
Fernández-Marchante, C. M.; Souza, F. L.; Millán, M.; Lobato, J.; Rodrigo, M. A. Sci. Total Environ. 2021, 754, 142230. DOI: https://doi.org/10.1016/j.scitotenv.2020.142230.
Carrera-Cevallos, J. V.; Prato-Garcia, D.; Espinoza-Montero, P. J.; Vasquez-Medrano, R. Water Air Soil Pollut. 2021, 232, 1-15. DOI: https://doi.org/10.1007/s11270-020-04941-z.
Brienza, M.; Garcia-Segura, S. Chemosphere. 2022, 307, 135974.DOI: https://doi.org/10.1016/j.chemosphere.2022.135974.
Becerra, D.; Arteaga, B. L.; Ochoa, Y. E.; Barajas-Solano, A. F.; García-Martínez, J. B..; Ramírez, L. F. Ing. Compet. 2020, 22, 1-12. DOI: https://doi.org/10.25100/iyc.v22i1.8135.
Inticher, J.J.; Cabrera, L.C.; Guimarães, R.E.; Zorzo, C.F.; Pellenz, L.; Seibert, D.; Borba, F.H.; J. Environ. Chem. Eng. 2021, 9, 105883. DOI: https://doi.org/10.1016/j.jece.2021.105883.
Ganiyu, S. O.; Martinez-Huitle, C. A.; Rodrigo, M. A. Appl. Catal. B Environ. 2020, 270, 118857. DOI: https://doi.org/10.1016/j.apcatb.2020.118857.
Pang, K.; Cheng, C.; Zhao, H.; Ma, Y.; Dong, B.; Hu. J. Microchem. J. 2021, 164, 105994. DOI: https://doi.org/10.1016/j.microc.2021.105994.
Cabrera, A.; Cox, L.; Spokas, K.; Hermosin, M.C.; Cornejo, J.; Koskinen, W.C. Sci. Total Environ. 2014, 470–471, 438–443. DOI: https://doi.org/10.1016/j.scitotenv.2013.09.080.
Tolgyesi, A.; Korozs, G.; Toth, E.; Balint, M.; Ma, X.; Sharma, V.K. Chemosphere. 2022, 286, 131927. DOI: https://doi.org/10.1016/j.chemosphere.2021.131927.
Gholami, M.; Jonidi-Jafari, A.; Farzadkia, M.; Esrafili, A.; Godini, K.; Shirzad-Siboni, M. J. Environ. Manage. 2021, 294, 112962. DOI: https://doi.org/10.1016/j.jenvman.2021.112962.
Davezza, M.; Fabbri, D.; Pramauro, E.; Prevot, A. B. Chemosphere. 2012, 86, 335–340. DOI: https://doi.org/10.1016/j.chemosphere.2011.09.011.
Narayanan, V. S.; Prasath, P. V.; Ravichandran, K.; Easwaramoorthy, D.; Shahnavaz, Z.; Mohammad, F.; Lohedan, H. A. A.; Paiman, S.; Oh, W. C.; Sagadevan, S. Mater. Sci. Semicond. Process. 2020, 119, 105238. DOI: https://doi.org/10.1016/j.mssp.2020.105238.
Li. N.; Li, R.; Yu, Y.; Zhao, J.; Yan, B. Chen, G. Sci. Total Environ. 2020, 741, 140492. DOI: https://doi.org/10.1016/j.scitotenv.2020.140492.
García-Vara, M.; Hu, K.; Postigo, C.; Olmo, L.; Caminal, G.; Sarrà, M.; López de Alda, M. J. Hazard. Mater. 2021, 409, 124476. DOI: https://doi.org/10.1016/j.jhazmat.2020.124476.
Avila, R.; García-Vara, M.; López-García, E.; Postigo, C.; de Alda, M.L.; Vicent, T.; Blánquez, P. Sci. Total Environ. 2022, 804, 150040. DOI: https://doi.org/10.1016/j.scitotenv.2021.150040.
Spaltro, A.; Simonetti, S.; Alvarez Torrellas, S.; Garcia Rodriguez, J.; Ruiz, D.; Juan, A.; Allegretti, P. Appl. Surf. Sci. 2018, 433, 487–501. DOI: https://doi.org/10.1016/j.apsusc.2017.10.011.
Moreira, F. C.; Boaventura, R. A. R.; Brillas, E.; Vilar, V. J. P. Appl. Catal. B Environ. 2017, 202, 217–261 DOI: https://doi.org/10.1016/j.apcatb.2016.08.037.
Campos-González, E.; Frontana-Uribe, B. A.; Vasquez-Medrano, R.; Macías-Bravo, S.; Ibanez, J. G. J. Mex. Chem. Soc. 2014, 58, 315-321.
Valenzuela, A. L.; Vasquez-Medrano, R.; Ibanez, J. G.; Frontana-Uribe, B. A.; Prato-Garcia, D. Water Air Soil Pollut. 2017, 228. DOI: https://doi.org/10.1007/s11270-017-3244-5.
He, Y.; Lin, H.; Guo, Z.; Zhang, W.; Li, H.; Huang, W. Sep. Purif. Technol. 2019, 212, 802–821. DOI: https://doi.org/10.1016/j.seppur.2018.11.056.
Kapalka, A.; Fóti, G.; Comninellis, C. in: Basic principles of the electrochemical mineralization of organic pollutants for wastewater treatment. C. Comninellis & G. Chen, Eds., Springer, New York, 2010, 1–23.
Malakootian, M.; Shahesmaeili, A.; Faraji, M.; Amiri, H.; Silva Martinez, S. Process Saf. Environ. Protect. 2020, 134, 292–307 DOI: https://doi.org/10.1016/j.psep.2019.12.004.
Malato, S.; Blanco, J.; Maldonado, M. I.; Fernández-Ibáñez, P.; Campos, A. Appl. Catal. B. 2000, 28, 163–174. DOI: https://doi.org/10.1016/S0926-3373(00)00175-2.
EPA, 2022. https://www.epa.gov/safepestcontrol/safe-disposal-pesticides Accessed 13/07/2023.
Brillas, E. Chem. Soc. 2020, 250, 126198 DOI: https://doi.org/10.1016/j.chemosphere.2020.126198.
Garrido, E. M.; Lima, J. L. C.; Delerue-Matos, C. M.; Oliveira Brett, A. M. Talanta. 1998, 46, 1131-1135. DOI: https://doi.org/10.1016/S0039-9140(97)00380-9.
Compton, R. G.; Laborda, E.; Ward, K. R. in: Understanding voltammetry: simulation of electrode processes, Compton, R. G., Ed., Imperial College Press, London, 2014, 30. DOI: https://doi.org/10.1142/p910.
Sandoval, M. A.; Calzadilla, W.; Salazar, R. Curr. Opin. Electroche. 2022, 33, 100939 DOI: https://doi.org/10.1016/j.coelec.2022.100939.
Newman, J.; Balsara, Nitash P. in: Electrochemical Systems. The Ecs Texts and Monographs, Newman, J., Ed., Hoboken, John Wiley and Sons Ltd, 2021, 283-297.
Panizza, M.; Michaud, P.A.; Cerisola, G.; Comninellis, C. J. Electroanal. Chem. 2001, 507, 206–214 DOI: https://doi.org/10.1016/S0022-0728(01)00398-9.
Rodrigo, M. A.; Michaud, P. A.; Duo, I.; Panizza, M.; Cerisola, G.; Comninellis, Ch. J. Electrochem. Soc. 2001, 148, D60-D64. DOI: http://dx.doi.org/10.1149/1.1362545.
Espinoza-Montero, P. J.; Vasquez-Medrano, R.; Ibanez, J. G.; Frontana-Uribe, B. A. J. Electrochem. Soc. 2013, 160, G3171–G3177 DOI: http://dx.doi.org/10.1149/2.027307jes.
dos Santos, A. J.; Martínez-Huitle, C. A.; Sirés, I.; Brillas, E. ChemElectroChem, 2018, 5, 685–693. DOI: https://doi.org/10.1002/celc.201701238.
Silva Barni, M. F.; Doumic, L. I.; Procaccini, R. A.; Ayude, M. A.; Romeo, H. E. J. Environ. Manage. 2020, 263, 110403. DOI: https://doi.org/10.1016/j.jenvman.2020.110403.
Ganiyu, S. O.; Martínez-Huitle, C. A. Curr. Opin. Electrochem. 2021, 27,100678. DOI: https://doi.org/10.1016/j.coelec.2020.100678.
Valero, D.; García-García, V.; Expósito, E.; Aldaz, A.; Montiel, V. Sep. Purif. Technol. 2014, 123, 15–22. DOI: https://doi.org/10.1016/j.seppur.2013.12.023.
Souza, F. L.; Lanza, M. R. V.; Llanos, J.; Saez, C.; Rodrigo, M. A.; Canizares, P. A. J. Environ. Manage. 2015, 158, 36–39. DOI: https://doi.org/10.1016/j.jenvman.2015.04.040.
Millán, M.; Rodrigo, M. A.; Fernández-Marchante, C. M.; Canizares, P.; Lobato, J. ACS Sustain Chem. Eng. 2019, 7, 8303–8309. DOI: https://doi.org/10.1021/acssuschemeng.8b06704.
Montiel, V.; Valero, D.; Gallud, F.; García-García, V.; Expósito, E.; Iniesta, J. in Chapter 19 - prospective applications of renewable energy-based electrochemical systems in wastewater treatment. Electrochemical water and wastewater treatment, Martínez-Huitle, C. A., Rodrigo, M. A., Scialdone, O., Ed., Butterworth-Heinemann; Oxford, UK, 2018, 513–541, https://doi.org/10.1016/B978-0-12-813160-2.00019-5.
International Renewable Energy Agency. Renewable power generation costs in 2021. 2022, Abu Dhabi.
Huber, R.; Otto, S. In: Reviews of Environmental Contamination and Toxicology, vol. 137. Ware, G.W., Ed., Springer, New York, NY. 1994, 112-113 DOI: https://doi.org/10.1007/978-1-4612-2662-8_3.
Abdessalem, A. K.; Oturan, M. A.; Oturan, N., Bellakhal, N.; Dachraoui, M. Int J Environ Anal Chem. 2010, 90, 468–477. DOI: https://doi.org/10.1080/03067310902999132.
dos Santos, M.; Silva, R.S.R.; Oishi, S.S.; Ferreira, N.G. Rev. Virtual Quim. 2019, 11, 1659–1681. DOI: 10.21577/1984-6835.20190117.
Guelfi, D. R. V., Brillas, E., Gozzi, F., Machulek, A., de Oliveira, S. C.; Sirés, I. J. Environ. Manage. 2019, 231, 213–221. DOI: https://doi.org/10.1016/j.jenvman.2018.10.029.
Alcaide, F.; Álvarez, G.; Guelfi, D. R. V.; Brillas, E.; Sirés, I. Chem. Eng. J. 2020, 379, 122417. DOI: https://doi.org/10.1016/j.cej.2019.122417.
Azeez Othman, M.; Yavuz, Y. Zanco J. Pure Appl. Sci. 2021, 33, 116-121.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Noe Valladares , Rubén Vázquez Medrano, Dorian Prato-Garcia , Jorge G. Ibanez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.